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This paper contains a systematic study of numerical approximations for solving
the exact kernel form of Pocklington’s integro-differential equation for the current
induced on a thin wire by an incident time-harmonic electromagnetic field. We con-
sider various Galerkin (h, p, hp, and adaptiveh) and collocation schemes and show
that a sensiblehp refinement strategy provides a very efficient way to solve the
problem. We also describe how the kernel (itself a difficult singular integral) can be
evaluated reliably and efficiently. c© 2001 Academic Press
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1. INTRODUCTION

Calculating the current induced on a thin wire by an incident electromagnetic field is an
important problem with a long history (see for example [12, Chapter 6] or the introduction
of [22]), dating back to Pocklington’s paper of 1897 [17]. The computational problem has
been widely studied (see [2, 5, 12, 16] and the references therein), although few authors
have carried out systematic comparisons of various different approximation techniques. The
1975 paper [5] does this to some extent, but its scope is restricted by the limited computing
power and analytical techniques available at that time and by the fact that it deals with an
ill-posed version of the problem. Here we carry out a thorough study of various different
approximation schemes for the difficult exact kernel form of the problem, describing how
they can be implemented efficiently and reliably enough to be useful in practice.

It is vital that any numerical scheme used to compute the induced current is both accurate
and efficient. Efficiency is significant because the problem (an integro–differential equation)
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is necessarily computationally intensive and because it often appears as a module in a much
more complicated code (e.g., the computational electromagnetics code NEC [4]). This is
also one reason why the current needs to be computed accurately (i.e., reliably found to
within a given tolerance). Another reason is that it is important to be able to evaluate the
errors introduced in the derivation of the thin wire model to determine when it is valid.
Modeling errors can only be identified when numerical errors are essentially eliminated
from the computed solution.

Here we consider the canonical problem of computing the current induced on a straight
thin wire by the time-harmonic electric fieldE(x)ei ωt . However, the solution techniques we
develop and use could be extended to deal with curved wires, although the implementation
will be significantly more complicated and costly in computer time. We note also that it is
relatively straightforward to calculate the scattered field once the current flowing along the
wire is known (this is described for example in [10]).

Suppose that the wire has unit length and radiusa¿ 1 and lies along thez-axis, where
x = (x, y, z); i.e., it occupies the regionW = {(x, y, z) ∈ R3 : x2+ y2 ≤ a2, z ∈ [0, 1]}.
One of the most common formulations of the problem is Pocklington’s equation, whose
derviation is sketched in Section 1.1. This is the integro–differential equation (IDE) for the
axial componentu of the current

−(ω2+ d2/dz2)

∫ 1

0
K (z− z′)u(z′) dz′ = f (z), (1.1)

where the right-hand sidef and kernelK are both known functions. Appropriate boundary
conditions are

u(0) = u(1) = 0. (1.2)

Inverting the Helmholtz operator in (1.1) leads to the Hallen version of the problem∫ 1

0
K (z− z′)u(z′) dz′ = Acosωz+ B sinωz− 1

ω

∫ z

0
f (z′) sinω(z− z′) dz′

in terms of two constantsAandB, which need to be chosen to satisfy the boundary conditions
(1.2). Both formulations of the problem are equivalent [11, 20], but as pointed out in these
two papers, solving Hallen’s equation numerically can give rise to unpredictable results.
The Hallen formulation of the problem is also much more restrictive in that it cannot easily
be extended to cover the case of curved wires (althouth this is possible in certain situations,
see [15]), whereas Pocklington’s equation can be extended. From now on, we therefore
restrict attention to consideration of numerical schemes for (1.1), (1.2).

Many authors use thereduced kernelform of the IDE (1.1) in whichK = KR given by

KR(ρ) = e−i ω
√

ρ2+a2

4π
√

ρ2+ a2
(1.3)

(see, e.g., [4, 5] and references in [2, 22]). However, sinceKR and its derivatives are bounded
for all ρ ∈ [0, 1], the mappingLR : L2(0, 1)→ L2(0, 1) (whereL2(0, 1) is the space of
square integrable functions on (0, 1)) defined by

LRu(z) ≡ −(ω2+ d2/dz2)

∫ 1

0
KR(z− z′)u(z′) dz′
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is a compact operator and hence has an unbounded inverse [13]. This means that the IDE
(1.1) with this kernel is ill-posed (the solutionu does not depend continuously on the
data f ). The ill-posedness of the equation has significant implications for anyone trying to
solve it numerically. Basically it means that (1.1) with kernelKR cannot give a “sensible”
numerical solution unless the smallest space mesh-sizeh used in its discretization is large
compared to the radiusa of the wire. Takingh to be too small results in the solution being
polluted by an oscillating error near the ends of the wire that grows ash is reduced (this is
illustrated for the reduced kernel Hallen problem in [2, Figs. 3.8 and 3.9]: similar results
are obtained for Pocklington’s equation). A consequence of this is that it is not possible to
increase the accuracy of the approximation by refining the mesh, and indeed it is not clear
what the computed “solution” actually represents. Although this has been known since the
early 1950s [21], the reduced kernel model still appears to be used in many situations.

For the reasons given above it is important to be able to compute the induced current
accurately, and this is not possible using the reduced kernel. Hence we consider numerical
schemes for the more complicatedexact kernelformulation of (1.1), in whichK = KE

given by

KE(ρ) = 1

4π2

∫ π

0

e−i ω
√

ρ2+4a2 sin2 θ

ρ2+ 4a2 sin2 θ
dθ. (1.4)

This is a singular kernel, satisfyingKE(ρ) ≈ −1
4π2a ln|ρ| for smallρ [16, 11]. Problem (1.1),

(1.2) with kernelKE has been shown to have a unique solution by Jones [11], and Rynne
[20] has proved that it is well-posed. Rynne shows that iff ∈ L P(0, 1) (spaces are defined
in Section 1.2 below), then the solutionu of the exact kernel form of (1.1) is continuous
and so the boundary conditions (1.2) are meaningful. He also proves that the solution has
square root behavior at the ends of the wire (i.e.,u(z) = O(

√
z(1− z)) for z≈ 0, 1).

In recent papers [18, 19], Rynne has derived a G˚arding type inequality for the integro–
differential operator and used it to obtain rigorous convergence results for Galerkin approx-
imations of (1.1). Implementing Rynne’s scheme efficiently is nontrivial since it involves
computing double integrals involving the singular kernelKE, which is itself an integral. The
difficulties involved in evaluatingKE are well documented [16, 23, 24], and in Section 3
we describe a new algorithm forKE that is both reliable and efficient. This section also
contains other implementation details. We describe several different numerical schemes for
the exact kernel form of (1.1) in Section 2, some of which (piecewise linear Galerkin and
various collocation methods) have been used previously for the reduced kernel problem, and
others (thep, hp, and adaptiveh methods) which have not. Numerical results are presented
in Section 4 and discussed in Section 5.

We conclude this section with a brief derivation of the thin wire model (1.1), (1.2) and a
description of notation and function spaces used in the rest of the paper.

1.1. Derivation of the IDE (1.1)

We now sketch the derivation of the model (1.1), (1.2), showing the assumptions that
result in both the reduced and exact kernel forms. Full details are given in [10]. An alternative
derivation is given by Tijhuiset al. in [22].

The current induced on the wire by the time-harmonic incident fieldE(x)ei ωt isuei ωt , and
we assume that the current flows along the wire so thatu(x′) = u(x′)ez whereez = (0, 0, 1).
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This means that the vector potential atx ∈ R3 is A(x)ei ωtez whereA is given by the integral

A(x) = µ

4π

∫
∂W

u(x′)e−i ω|x−x′|/c

|x− x′| dS′

over the surface∂W of the wire, whereµ is the permeability andc the speed of light. The
z-componentEs of the scattered electric field is given by

(c2∂2/∂z2+ ω2)A(x) = i ωEs(x).

Assuming the wire to be a perfect conductor implies that the tangential component of the
total (incident and scattered) electric field is zero on the wire’s surface and hence

−(c2∂2/∂z2+ ω2)A(x) = i ωE(x),

for x ∈ ∂W, where E is the z-component ofE. Making the change of variablesE1 =
E/c, u1 = µu, andω1 = ω/c (soω1 is the wavenumberk), and then dropping the subscripts
from E, u, andω results in the nondimensionalized equations

A(x) = 1

4π

∫
∂W

u(x′)e−i ω|x−x′|

|x− x′| dS′ (1.5)

and

−(∂2/∂z2+ ω2)A(x) = i ωE(x). (1.6)

Note that if the wire has lengthL 6= 1, then the nondimensionalized frequencyω corresponds
to kL and the nondimensionalized radiusa to the true wire radius divided byL.
The model (1.1), (1.2) is derived after making some further simplifying assumptions.

1. The wire is regarded as an open tube and henceu(x, y, z) = 0 for (x, y, z) ∈ ∂W and
z ∈ {0, 1}.

2. Because the wire is thin, the(x, y)-dependence of the electric field on the surface of
the wire is ignored: i.e., setE(x) = E(z) for x ∈ ∂W.

3. The final simplification concerns the currentu(x).
(a) The surface current is also assumed to be azimuthally symmetric; i.e., ifx ∈ ∂W

then

u(x, y, z) = u(z)

2πa
.

This implies that the term|x− x′| in the integrand of (1.5) can be written as

|x− x′|2 = |(a cosφ, a sinφ, z)− (a cosφ′, a sinφ′, z′)|2

= 2a2[1− cos(φ − φ′)] + |z− z′|2

for someφ, φ′. After some manipulation this yieldsA(x) = AE(z) for x ∈ ∂W, where

AE(z) =
∫ 1

0
KE(z− z′)u(z′) dz′

is given in terms of the exact kernelKE defined by (1.4).
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(b) The reduced kernel formulation follows from regarding the current as acting on
the wire’s midline, instead of on the surface (but still applying the electric field boundary
condition on its surface). In this case the integrand term in (1.5) is

|x− x′|2 = a2+ |z− z′|2

whenx ∈ ∂W, and it follows thatA(x) = AR(z) where

AR(z) =
∫ 1

0
KR(z− z′)u(z′) dz′

for KR defined in (1.3).

SubstitutingAE or AR for A into (1.6) results in either the exact or reduced kernel forms
of the IDE (1.1) respectively, where the right-hand side isf (z) = i ωE(z). The boundary
conditions (1.2) follow immediately from assumption 1.

Note that the model used in the code NEC-4 [4] is for a closed tube and so includes
an approximation of the wire end caps. In [4] the current is regarded as flowing along the
wire’s surface and the electric field boundary condition is applied on the axis, again leading
to A = AR given in 3(b) above.

1.2. Notation and Spaces

We conclude this section with definitions of the function spaces and norms needed in the
rest of the paper.

Suppose thatU ⊂ Rm for m= 1 or 2 (in most of the textU = (0, 1) ∈ R). For any
1≤ p <∞ let L p(U ) be the set of complex valued functionsg for which the integral of
|g|p overU is finite, and define theL2 norm

‖g‖L2(U ) ≡
(∫

U
|g(x)|2 dx

)1/2

in the usual way. The inner product of two functionsf andg ∈ L2(U ) is written as〈 f, g〉
and defined by

〈 f, g〉 =
∫

U
f (x) g(x) dx.

Additionally let H1(U ) be the Sobolev space of functions whose generalized derivatives
up to order 1 belong toL2(U ).

We also require fractional order Hilbert spaces based on (0, 1). To this end, letÄ ∈ R2 be a
simply connected bounded domain whose boundary∂Ä is smooth curve, and letH1/2(∂Ä)

denote the (Sobolev) space [14]

H1/2(∂Ä) ≡ {u|∂Ä : u ∈ H1(R2)}.

Let 0 with 0̄ ⊂ ∂Ä be a connected piece of∂Ä and set

H̃
1/2

(0) ≡ {u ∈ H1/2(∂Ä) : supp(u) ⊂ 0
}

with associated norm‖u‖H̃1/2(0) (see [14]). This space is used in Section 2.6 with0 = (0, 1).
A different but equivalent definition of̃H

1/2
(0, 1) is given in [18].
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2. NUMERICAL METHODS

This section contains a description of several different numerical methods for the problem
(1.1), (1.2) withK = KE. We shall only consider the exact kernel form of the problem from
now on, and consequently drop the subscriptE and useK to denote the exact kernel (1.4).

We begin Section 2.1 with a description of the uniform mesh piecewise linear Galerkin
approximation that Rynne [18] has shown to be convergent. When implemented naively this
method is extremely slow, and we identify ways in which it can be made efficient enough to
use in practice. However, it is still slower than similar collocation schemes and two of these
are detailed in Sections 2.2 and 2.3. We also consider some more sophisticated finite element
approximations (thep, hp, and adaptiveh methods) in Sections 2.4–2.6, and we present
and discuss numerical results for all these schemes in Section 4. Although using an adaptive
method may appear superficially attractive, the work involved in computing the residual-
based error estimate is such that the scheme cannot compete with a sensible nonadaptive
hpmethod like that described in Section 2.5. This and other specific implementation details
(how to evaluate and integrate the kernel (1.4) and how to perform the linear algebra) are
described in Section 3. In all the methods that follow we usen to represent the number of
subintervals of the wire (0, 1) used in the approximation, andN for the total number of
unknowns.

2.1. Piecewise Linear Galerkin

Multiplying the IDE (1.1) by a test functionψ(z) ∈ H1(0, 1) that satisfiesψ(0) =
ψ(1) = 0 and integrating by parts gives

〈 f, ψ〉 = 〈KDu, Dψ〉 − ω2〈Ku, ψ〉, (2.1)

where D = d/dz, 〈.,.〉 denotes theL2 inner product (described in Section 1.2), and the
operatorK is defined by

(Kψ)(z) ≡
∫ 1

0
K (z− z′)ψ(z′) dz′.

We use piecewise linear trial and test functions on a uniform mesh of sizeh = 1/n, defining
φ j (z) ≡ φ(z/h− j ) for

φ(t) ≡
{

1− |t | if |t | < 1

0 otherwise.

Expandingu in terms of these basis functions as

u(z′) ≈ U (h)(z′) ≡
n−1∑
j=1

U j φ j (z
′) (2.2)

yields the linear system

(B− ω2C)U = f , (2.3)
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whereU = (U1, . . . ,Un−1)
T , f = (〈 f, φ1〉, . . . , 〈 f, φn−1〉)T , and the components of the ma-

tricesB andC are given by

Bjk = 〈KDφ j , DφK 〉, Cjk = 〈Kφ j , φk〉.

The unknowns for the problem are the coefficients ofU, and soN = n− 1 for this approx-
imation scheme.

Rynne [18] has shown that the scheme (2.3) converges to the solution of the exact problem
as the mesh-sizeh→ 0, when exact integration is used to evaluate the components of
B andC. In practice the component integrals cannot be found analytically and have to
be approximated. It is important for this to be done efficiently since they are all three-
dimensional (3D) integrals (because they involveK , which is itself an integral). Fortunately
it is possible to use a simple 2D change of variables so that each component can be written
as a 2D integral. We illustrate how this can be done by looking at the matrixB.

It is straightforward to show thatBj,k = 2Vj−k − Vj−k−1− Vj−k+1 for j, k = 1 : n− 1,
where

Vm ≡
∫ 1

0

∫ 1

0
K (h[x − x′ +m]) dx′dx,

and henceB is a symmetric Toeplitz matrix whose entries are given in terms of triple
integrals. Using the change of variabless= x − x′, s′ = x + x′ means that theVm can be
written as

Vm =
∫ 1

0
(1− s){K (h[m+ s])+ K (h[m− s])} ds. (2.4)

Therefore in order to computeB, it is necessary just to evaluate then double integrals
Vm, m= 0 : n− 1 in (2.4). The same procedure can be used to evaluate the components of
C, which reduce toCj,k = Wj−k where

Wm =
∫ 2

0
γ (s){K (h[m+ s])+ K (h[m− s])} ds,

andγ is the twice continuously differentiable function defined by

γ (s) =

(

s3

2 − s2+ 2
3

)
for 0≤ s ≤ 1

(2− s)3

6 for 1 < s ≤ 2.

The integralsVm andWm can either be evaluated by a 1D quadrature formula that uses
values ofK (this involves first approximating the kernelK ), or by using 2D quadrature for
the double integral. Both approaches have been compared and the most efficient approach
that we found is to evaluateK explicitly and use 1D adaptive quadrature (details are given
in Section 3).

Thus the linear system (2.3) can be written as

AU = f ,
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whereA = B− ω2C is a symmetric ToeplitzN × N matrix. As discussed in Section 3.4,
the fact thatA is Toeplitz means that Levinson’s algorithm can be used to solve the linear
system efficiently for largeN (see also [22]).

The method is applied by successively halving the mesh size (i.e., doublingn) until two
approximate solutions are sufficiently close together in theL2 norm. The algorithm for
the method is summarized below. Other Galerkin schemes have been considered for the
reduced kernel form of (1.1) in [5, 12].

ALGORITHM 1

1. Choose an initial uniform grid withn elements (e.g., usen = 4) and a toleranceτ .
2. Set the mesh spacing to beh = 1/nand compute the approximate solutionUold = U (h)

on this mesh.
3. Setn := 2n, h = 1/n and compute the approximate solutionUnew= U (h) on this finer

mesh.
4. If ‖Unew−Uold‖L2(0,1) < τ then terminate the calculation. Otherwise setUold := Unew

and return to 3.

2.2. Piecewise Linear Collocation

Collocation is another popular way of solving (1.1) and often has the advantage that the
matrix elements are faster to evaluate than for the corresponding Galerkin scheme [5, 12].
However, there are no convergence results for collocation schemes of the type given for
Galerkin schemes in [18, 19].

The first collocation scheme we consider also uses the expansion (2.2) foru in terms
of the piecewise linear basis functionsφ j given in the previous subsection (and so again
N = n− 1, where the mesh spacing ish = 1/n). This is substituted into the IDE (1.1),
and a second central difference is used to approximate the second derivative. The resulting
equation is forced to be satisfied at the node pointszj = jh to yield

n−1∑
k=1

{
1

h2

∫ 1

0
[K (zj+1− z′)− (2− h2ω2)K (zj − z′)+ K (zj−1− z′)] φk(z

′) dz′
}

Uk = f (zj )

for j = 1 : n− 1. Once the integrals are approximated (see Section 3.2 for details) this
scheme also reduces to a symmetric Toeplitz linear systemAU = f (for a different matrix
A and where heref = ( f (z1), . . . , f (zn)

T ). The method is again applied with a uniform
(halving) mesh refinement strategy, and is identical to Algorithm 1.

2.3. Piecewise Trigonometric Collocation

Other basis functions have often been used to solve (the reduced kernel form of) (1.1)
[5, 4, 12], and one of the most popular of these is the set of piecewise trigonometric basis
functionsψ j defined on a uniform mesh with spacingh = 1/n by

ψ j (z) =
{

aj + bj sinω(z− zj−1/2)+ cj cosω(z− zj−1/2) if z ∈ [zj−1, zj )

0 otherwise,
(2.5)

wherezk = kh and the constantsaj , bj andcj , j = 1 : n are the unknowns for the problem
(so N = 3n for this type of approximation).
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The currentu is expanded in terms of these basis functions as

u(z′) ≈
N−1∑
j=1

ψ j (z
′).

The two boundary conditions (1.2) are enforced by

a1− b1 sin(ωh/2)+ c1 cos(ωh/2) = 0

an + bn sin(ωh/2)+ cn cos(ωh/2) = 0

}
(2.6)

and both the approximate current and its first derivative are forced to be continuous for all
z′ ∈ (0, 1) by assuming the unknowns to satisfy

aj + bj sin(ωh/2)+ cj cos(ωh/2) = aj+1− bj+1 sin(ωh/2)+ cj+1 cos(ωh/2)

bj sin(ωh/2)− cj cos(ωh/2) = −bj+1 sin(ωh/2)− cj+1 cos(ωh/2)

}
(2.7)

for j = 1 : n− 1. Together (2.6) and (2.7) comprise 2n equations, and the remainingn
equations are obtained from the IDE (1.1). The approximate current is substituted into the
IDE to give

−
n∑

j=1

(ω2+ D2)

∫ zj

zj−1

K (z− z′)
(
aj + bj sinω

(
z′ − zj−1/2

)
+ cj cosω

(
z′ − zj−1/2

))
dz′ = f (z),

whereD = d/dz. Integrating by parts separately on each subinterval (using the continuity
of u andDu on (0, 1)) then gives

K (z− 1)Du(1)− K (z)Du(0)− ω2
n∑

j=1

aj

∫ zj

zj−1

K (z− z′) dz′ = f (z), (2.8)

where note that the integrand is particularly simple because the sine and cosine terms in the
basis function are annihilated by the Helmholtz operator in (1.1). This equation is assumed
to hold at the patch midpointsz= zj−1/2, j = 1 : n to give a system ofn equations involving
the integrals ∫ 1/2

−1/2
K (h[m− s]) ds, m= 0 : n− 1.

The full linear system comprises (2.6), (2.7), and (2.8) at the patch midpoints, and ways
in which it can be solved most efficiently are discussed in Section 3.4. This collocation
scheme is also applied with a uniform (halving) mesh refinement strategy and hence is also
that given in Algorithm 1. Numerical results are presented in Section 4.

We note that the alternative representation of the basis functions in the piecewise trigono-
metric scheme as

ψ j (z) = a′j + b′j sinω(z− zj−1/2)+ c′j (cosω(z− zj−1/2)− 1) if z ∈ [zj−1, zj ) (2.9)
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is used in NEC-4 [4] to deal with rounding error problems in low-frequency simulations.
This is because cosω(z− zj−1/2) ≈ 1 at low frequency and the independence of theaj

andcj cosω(z− zj−1/2) terms in (2.5) is destroyed by rounding errors. In contrast, the
independence of thea′j and c′j (cosω(z− zj−1/2)− 1) terms in (2.9) is maintained for
smallω if the identity cosx − 1= −2 sin2(x/2) is used in numerical evaluation to avoid
rounding errors.

2.4. Uniform p-Method

The three methods discussed above have all been refined by reducing the mesh size
according to Algorithm 1, keeping the basis functions unchanged apart from a scaling. The
p-method instead involves using a fixed grid throughout the calculation and is refined by
increasing the degree of the piecewise polynomial basis functions used.

The initial approximation(p = 1) is the piecewise linear Galerkin solution of Section 2.1
on a uniform grid with mesh-sizeh = 1/n (where e.g.,n = 8). Higher order approximations
are obtained by augmenting the piecewise linear test and basis functionsφ j , j = 1 : n
by higher degree polynomial bubble functions. These are taken to be anti-derivatives of
Legendre polynomials defined on the interval [−1, 1] and then mapped onto each element
[zj−1, zj ] (where againzk = kh). The p− 1 bubble functions for the method of degree
p > 1 are defined (on the canonical interval [−1, 1]) by

ϕk(s) =
√

k+ 1/2
∫ s

−1
Pk(ξ) dξ, for k = 1 : p− 1,

wherePk is the Legendre polynomial of degreek. Note that each of these are zero at the
endpointss= ±1. Other nice properties of these functions are described in [9].

Thep− 1 bubble functions associated with thej th interval areϕ j,k(z) for k = 1 : p− 1,
where

ϕ j,k(z) =
{

ϕk(2z/h+ 1− 2 j ) if z ∈ [zj−1, zj ]

0 otherwise.

For ease of notation we relabel the “hat” functions of Section 2.1 asφ j = ϕ j,0, and we
expand the currentu in terms of the hat and bubble basis functions as

u(z′) ≈ U (p)(z′) ≡
n∑

j=1

p−1∑
k=0

U j,kϕ j,k(z
′).

Note that each of the basis functions is continuous on the whole interval [0, 1] and that this
approximation automatically satisfies the boundary conditions (1.2). The unknowns are the
N = np constantsU jk for j = 1 : n, k = 0 : p− 1. Taking the test functionψ in the inner
product (2.1) with each of the basis functionsϕ j,k then yields anN × N linear system of
the form

AU = f , (2.10)

where U= (U1,0, . . . ,U1,p−1,U2,0, . . . ,U2,p−1, . . . ,Un,0, . . . ,Un,p−1)
T , and f = ( f1,0,

. . . , fn,p−1)
T for f j,k = 〈 f, ϕ j,k〉.
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The algorithm is summarized below. It uses a stopping criterion based on theL2 norm of
the difference between two successive approximations but this is not the only possibility.

ALGORITHM 2

1. Choose a fixed uniform grid with mesh-spacingh (e.g.,h = 1/8), and a toleranceτ ,
and setp = 1.

2. Compute the approximate solutionUold = U (1) using the piecewise linear Galerkin
approximation on this grid.

3. Setp := p+ 1, and compute the approximate solutionUnew= U (p) using the hat and
bubble basis functions of degree up top as described above.

4. If ‖Unew−Uold‖L2(0,1) < τ , then terminate the calculation. Otherwise setUold := Unew

and return to 3.

2.5. Nonadaptive hp-Method

Thehp-method involves refining both the size of (some) grid elements and the degree
of the piecewise polynomial basis functions according to a predetermined strategy. The
initial approximation(p = 1) is again the piecewise linear Galerkin solution of Section 2.1
on a uniform grid with mesh sizeh = 1/n (where e.g.,n = 4 or 8). The strategy used to
generate successive approximations of increasing accuracy should be based on knowledge
of properties of the exact solutionu. Becauseu behaves like a square root near the ends of
the wire but is otherwise smoother [20], a sensible strategy is to subdivide the elements at
the two ends of the mesh (i.e., those that contain the points 0 and 1), and increase the degree
of the bubble basis functions in all other elements by 1.

Suppose that the current mesh is levelk− 1 and hasn(k−1) (not necessarily uniform)
intervals with mesh points

z(k−1)
j , j = 0 : n(k−1)

where

z(k−1)
0 = 0, z(k−1)

n(k−1) = 1.

Denote thej th interval by0
(k−1)
j = [z(k−1)

j−1 , z(k−1)
j ] and suppose that the degree of basis

functions used on the interval0
(k−1)
j is p(k−1)

j . We always use degree 1 polynomial basis
functions at the two ends of the wire, so thatp(k−1)

1 = p(k−1)

n(k−1) = 1 for anyk. The refinement
strategy to obtain the levelk mesh-points and basis functions is to chooseλ ∈ (0, 1) and
then

• setn(k) = n(k−1) + 2;
• if j = 1,

0
(k)
1 =

[
0, λz(k−1)

1

]
, p(k)

1 = 1

0
(k)
2 =

[
λz(k−1)

1 , z(k−1)
1

]
, p(k)

2 = p(k−1)
1 + 1= 2;

• if 1 < j < n(k−1),

0
(k)
j+1 = 0

(k−1)
j , p(k)

j+1 = p(k−1)
j + 1;
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FIG. 2.1. The first three levels of mesh and basis refinement for the (nonadaptive)hp-method starting with
a uniform mesh with four intervals whenk = 1. The circles represent mesh points and the degree of polynomial
basis function used in each interval is written above it.

• if j = n(k−1),

0
(k)

n(k)−1 =
[
z(k−1)

n(k−1) , µ
(k)
]

p(k)

n(k)−1 = p(k−1)

n(k−1) + 1= 2

0
(k)

n(k) = [µ(k), 1] p(k)

n(k) = 1,

where 1− µ(k) = λ[1− z(k−1)

n(k−1) ].

In calculations we usedλ = 0.17 motivated by [7] and numerical experiments to obtain
nearly optimal (exponential) convergence. The first three levels starting from a uniform
mesh withn(1) = 4 are shown in Fig. 2.1.
The method is also applied repeatedly until two successive approximate solutions are suf-
ficiently close in theL2(0, 1) norm.

2.6. Adaptive h-Method

The final scheme that we consider is adaptive—it uses the piecewise linear Galerkin
algorithm of Section 2.1 on a nonuniform mesh that is chosen in order to minimize an
estimate of the error in the computed solution. As in the previous subsection we denote the
mesh intervals by0 j , j = 1 : n, and seth j to be the length of the interval0 j . This adaptive
strategy needs an a posteriori error estimateη, and a reliable estimate based on the residual
is given by Rynne in [18],

η(0 j ,U ) = h1/2
j ‖LU − f ‖L2(0 j ), (2.11)

whereL is the operator corresponding to the IDE (1.1), i.e.,

Lu(z) ≡ − d

dz

∫ 1

0
K (z− z′)

du

dz′
(z′) dz′ − ω2

∫ 1

0
K (z− z′)u(z′) dz′.

Rynne shows that the difference between the exact solutionu(z) and its Galerkin approxi-
mationU (z) on a particular mesh satisfies

‖u−U‖2
H̃

1/2
(0,1)
≤ C

n∑
j=1

η(0 j ,U )2,

whereC is a constant independent of the mesh.
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The mesh and solution are computed according to the following algorithm, which again
uses a stopping criterion based on theL2 norm.

ALGORITHM 3

1. Choose an initial coarse mesh0
(1)
j , j = 1 : n(1) (e.g., setn(1) = 4 and let eachh j =

1/n(1)), and a toleranceτ and initialize the level tok = 1.
2. Compute the approximate solutionUold = U (1) using the piecewise linear Galerkin

approximation on the coarse mesh.
3. For eachj = 1 : n(k) computeη(k)

j ≡ η(0
(k)
j ,U (k)) and setη(k) = max1≤l≤n(k) η

(k)
l .

4. Refine (halve) the element0
(k)
j if η

(k)
j ≥ 0.5η(k) to obtain a new mesh0(k+1)

j , j = 1 :
n(k+1).

5. Setk := k+ 1, and compute the Galerkin solutionUnew= U (k) on the current mesh
{0(k)

j }.
6. If ‖Unew−Uold‖L2(0,1) < τ , then to terminate the calculation. Otherwise setUold :=

Unew and return to 3.

Note that the estimateη in (2.11) must be computed on any given mesh. This is computa-
tionally intensive since it involves the evaluation of 3D integrals. Ways in whichη can be
approximated efficiently are discussed in Section 3.5.

3. IMPLEMENTATION

This section contains a description of some of the specific implementation details for the
algorithms of Section 2. One of the most important and difficult parts of any of these algo-
rithms is the evaluation of the exact kernel (1.4) and its integrals weighted by polynomials.
We begin with two sections describing how this can be done both accurately and efficiently;
the first considers the efficient evaluation of (1.4) and the second deals with the integrals that
are needed to construct the coefficient matrix for each algorithm. We next look at efficient
techniques for solving the various linear systems that arise, and in the final section we ex-
amine ways in which the computational effort involved in approximating the error estimator
η used in theh-adaptive algorithm of Section 2.6 can be reduced. We note that [4] contains
a discussion of implementation issues for integrals involving the reduced kernel (1.3).

3.1. Evaluation of the Exact Kernel

We first rescale the exact kernel (1.4) with respect to the wire radius, rewriting it as

K (ρ) = 1

4aπ2
F(ρ/(2a), 2aω),

where

F(λ, ν) ≡
∫ π/2

0

e−i νR

R
dθ, (3.1)

R= R(λ, θ) ≡
√

λ2+ sin2 θ , the scaled distance variable is

λ = ρ/(2a),

and the scaled frequency is

ν = 2aω.
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To establish some properties of the scaled kernelF we follow [16, 23, 24] and split it
into two parts,

F(z, ν) =
∫ π/2

0

1

R
dθ +

∫ π/2

0

(e−i νR− 1)

R
dθ,

noting that the second term is bounded (its integrand is bounded) and that the first term can
be written as ∫ π/2

0

1

R
dθ = 1√

λ2+ 1
EllipticK

(
1√

λ2+ 1

)
,

where EllipticK is the complete elliptic integral of the first kind (there is no simple expression
for the second term). This yields the well-known result (see, e.g., [16, 11])

K (ρ) = O(ln |ρ|) asρ → 0,

since EllipticK has a logarithmic singularity as its argument approaches 1. More details of
the properties ofK can be found in [18, 20].

This singularity is the main source of difficulty in evaluating the scaled kernelF . The
degree of difficulty in calculatingF at a value ofλ (for fixed ν) is roughly correlated with
the ease or difficulty in computing EllipticK (1/

√
λ2+ 1) (i.e., hard whenλ is small and

relatively easy for largeλ). There are also problems whenν is large, since then the kernel
is highly oscillatory. We have found that the most efficient strategy for evaluatingF is to
treat the small and largeλ cases separately, combining them in a single kernel evaluation
subroutine. We begin with a description of the easier case.

Largeλ. We first rewrite the scaled kernel (3.1) as

F(λ, ν) = e−i νR∗
∫ π/2

0

e−i ν(R−R∗)

R
dθ, (3.2)

whereR∗ is the midpoint value
√

λ2+ 1/2. An accurate estimate ofF for largeλ can be
obtained by applying the composite trapezoidal rule withM intervals to the integral (3.2),
repeatedly doublingM until the relative difference between two successive approximations
is smaller than some predefined toleranceτ (typically τ = 10−12). Very accurate results
can be obtained by using moderately low values ofM , as shown in Fig. 3.1 (the accuracy
depends on the scaled frequencyν). This is presumably because away fromλ = 0 the
integrand is a smooth, periodic (inθ ) function. Thee−i νR∗ term is extracted to improve
the accuracy of computing the complex exponential term in the integrand when the scaled
frequencyν is large. We also use the identity

R− R∗ = − cos(θ/2)

2(R+ R∗)

to reduce rounding error problems whenλ is very large, since the direct calculation of
R− R∗ in standard 64-bit arithmetic gives only about 16− 2 log10 λ significant digits of
accuracy forλ ∈ [1, 108]. All precision is lost forλ > 108.
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FIG. 3.1. Relative error against scaled distanceλ for various simple approximations of the exact kernel (1.4).
The approximations are: reduced kernel (1.3) (-), single interval midpoint rule (3.3) (- -), trapezoidal rule with
2(-.), and 4 (:) subintervals. Results are shown for a small- and large-scaled frequencyν.

Various authors [5, 16] use the reduced kernel (1.3) to approximate the exact kernel (1.4),
and Fig. 3.1 shows that it is a good match asλ→∞. However, it is interesting to note from
the figure that the approximation

K (ρ) ≈ 1

4π

e−i ω
√

ρ2+2a2√
ρ2+ 2a2

(3.3)

obtained by a single interval midpoint rule approximation of the integral (3.2) gives even
better results for the same computational effort at largeλ.

Smallλ. When the scaled distance argumentλ is small, the logarithmic singularity in
the kernel dominates its computation. The most efficient way we have found to evaluate it
is to treat the real and imaginary parts separately, writing the scaled kernel as

F(λ, ν) =
∫ π/2

0

cos(νR)

R
dθ︸ ︷︷ ︸

=F1(λ,ν)

− i
∫ π/2

0

sin(νR)

R
dθ︸ ︷︷ ︸

=F2(λ,ν)

. (3.4)

The termF2(z, ν) can be efficiently evaluated to any required accuracy by the composite
trapezoidal rule, which again exhibits superconvergence as the number of subdivisions is
increased.

We needed to use a more sophisticated approximation strategy forF1. As noted above,

F1(λ, 0) = 1√
λ2+ 1

EllipticK

(
1√

λ2+ 1

)
.

A standard form for the elliptic integral is

EllipticK(l ) =
∫ 1

0

dt√
(1− t2)(1− l 2t2)

for 0≤ l ≤ 1, (3.5)

and hence EllipticK(0) = π/2. Care is required in evaluating this integral when the argu-
mentl ≈ 1, and a standard method used in mathematical software libraries for evaluating
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EllipticK uses the Landen transform

k = 1−√1− l 2

1+√1− l 2
, t := (1+ k)t

1+ kt2

(see [8, p. 250] for details) in (3.5) to obtain the identity

EllipticK(l ) = (1+ k)EllipticK(k).

Note that 0< k < l < 1, and so the transform converts the elliptic integral to one with a
smaller argument. This identity can be used repeatedly to obtain

EllipticK(k0) = (1+ k1)(1+ k2) . . . (1+ kn)EllipticK(kn), kj+1 =
1−

√
1− k2

j

1+
√

1− k2
j

and, sincekn→ 0 asn→∞, the process is terminated in floating point arithmetic when
kn is small enough to ensure thatf l (1+ kn) = 1, giving

f l (EllipticK(k0)) = (1+ k1)(1+ k2) . . . (1+ kn)
π

2

to machine precision. This approach is also called the method of arithmetic-geometric
means [1, Section 17.6].

We have found that the Landen transform is also an efficient method for calculating the
real partF1 of the kernel in (3.4). Using the change of variablet = cosθ gives

F1(λ, ν) = 1

k0

∫ 1

0

g0(t) dt√(
1− k2

0t2
)
(1− t2)

,

where

k0 = 1

1+ z2
and g0(t) = cos

(
ω

k0

√
1− k2

0t2

)
.

We then use the Landen transform

kj+1 =
1−

√
1− k2

j

1+
√

1− k2
j

, gj+1(t) = gj

(
1+ kj+1t

1+ kj+1t2

)
, t := 1+ kj+1t

1+ kj+1t2

for j = 0, 1, . . . to obtain

F1(λ, ν) = k0

∫ 1

0

g0(t) dt√(
1− k2

0t2
)
(1− t2)

= k0(1+ k1)

∫ 1

0

g1(t) dt√(
1− k2

1t2
)
(1− t2)

= k0(1+ k1) . . . (1+ kn)

∫ 1

0

gn(t) dt√(
1− k2

nt2
)
(1− t2)

,
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where the sequencekj is the same as for EllipticK. The process again terminates when
f l (1+ kn) = 1 giving

f l (F1(λ, ν)) = k0

n∏
j=1

(1+ kj )

∫ 1

0

gn(t) dt√
1− t2

= k0

n∏
j=1

(1+ kj )

∫ π/2

0
gn(sinθ) dθ

to machine precision, and the final integral can be approximated using the composite trape-
zoidal rule.

Switching between small and largeλmethods. We carried out numerical tests to measure
flop counts for both the small and largeλ evaluation methods described above, over a large
range of values ofλ and for a wide range of scaled frequenciesν. In general both schemes
are roughly equally efficient for the middle values ofλ, and for largerλ the direct (largeλ)
method is more reliable (because it takes care of rounding error problems) and is about five
times faster than the Landen transform (smallλ) method. For smallλ the direct method is
extremely inefficient compared to the Landen transform method. Taking into account the
effects of the scaled frequencyν on the flop count for the calculations, we use the Landen
transform method when

λ ≤ λswitch(ν) ≡ 10

10+ |ν|
and the largeλ method otherwise. This is simply a rule of thumb, safeguarded by favoring
the Landen transform (smallλ) method for the reasons give above.

3.2. Efficient Evaluation of the Integrals in the Coefficient Matrices

The coefficient matrices generated by the numerical methods described in Section 2
require the evaluation of integrals of the form

I P =
∫ 1

0
K (sh+ σ)P(s) ds, (3.6)

whereP(s) is a low-order polynomial,σ = ±zj (node point) or±zj+1/2 (element midpoint),
andh is the length of the mesh interval. The exact details depend on the scheme, and we
note that none of the integrals required for any of the schemes gives a simple closed form
expression. We must therefore use numerical approximation.

The main problem in approximating (3.6) is again the singular behavior of the kernel
functionK . There are many ways to approximate (3.6), ranging from a direct approximation
by a 1D adaptive quadrature package, such asD01AJFfrom NAG, to substitution of the kernel
definition (1.4) into (3.6) followed by a direct approximating of the resulting 2D integral
by a 2D adaptive quadrature method, such as the NAG routineD01FCF. An intermediate
strategy is described in [23].

After much experimentation with these various approaches, we conclude that an efficient
way to approximate (3.6) for all the cases required is to split it into a singular and a
nonsingular integral and use adaptive 1D quadrature on each part separately. We first write

I P =
∫ 1

0
(K (sh+ σ)− K0(sh+ σ))P(s) ds︸ ︷︷ ︸

=I P1

+
∫ 1

0
K0(sh+ σ)P(s) ds,︸ ︷︷ ︸

=I P2
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where

K0(ρ) =
{

1
2π2a

(− log
∣∣ ρ

2a

∣∣+ ∣∣ ρ

2a

∣∣− 1
)
, |ρ| ≤ 2a

0, otherwise

is continuously differentiable for all|ρ| 6= 0 (including|ρ| = 2a) and has the same leading
order behavior asK (ρ) asρ → 0. The integralI P2 is simple enough to evaluate explicitly,
and the integrand ofI P1 is (following [18, 20]) continuously differentiable, and soI P1 can
be tackled directly by an adaptive 1D quadrature routine, such as the NAG routineD01AJF.

3.3. Matrix Assembly in the p-, hp-, and Adaptive h-Schemes

In the p-method of Section 2.4 the mesh is fixed and enhancing the approximation from
degreep to p+ 1 only requires the additional calculation of

(Kφ j,p, φl ,m) for j, l = 1, . . . , n, m= 0, . . . , p

rather than the recalculation of the complete matrix. Thus the coefficient matrix is simply
extended as the degree of the approximation in each element increases.

The mesh in the adaptiveh-scheme is refined at the ends as the scheme progresses,
but most of the elements remain the same from step to step and so their contribution to
the coefficient matrix does not change. To avoid duplicated effort we store the element
submatrices, modify them to cope with the local changes in the mesh, and assemble the full
coefficient matrix from them at each step.

Thehp-scheme uses both of these strategies.

3.4. Linear Algebra

The end result of each of the methods described in Section 2 is a linear system of equations

AU = f ,

where the vectorU contains the unknown coefficients used in the approximate solution, and
vector f is generated from the known incident field function in (1.1). The details depend
on the scheme. In general there is no special structure to be exploited in the linear algebra
required for the nonuniform grid schemes, and we use a standard Gaussian elimination
solver (the MATLAB backslash (\) operator) in this case. This requiresO(N3) flops and
storage for theN2 (complex) entries in the matrix. However, the uniform grid schemes do
have a special structure which can be used both to speed up the solution of this linear system
from O(N3) to O(N2) flops, and to reduce the storage required fromO(N2) to O(N). We
examine this below.

The uniform grid piecewise linear Galerkin and collocation methods of Sections 2.1 and
2.2 result in a dense system of equations with symmetric Toeplitz structure. That is, the
N × N coefficient matrix has entries

Aj,k = α| j−k|.

The complex constantsαs, s= 0, . . . , N − 1 depend on the method used. Symmetric
Toeplitz systems can be solved using Levinson’s algorithm [2, 6, Section 4.7] inO(N2)
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flops, compared toO(N3) flops by standard Gaussian elimination for dense matrices. Also,
the storage required is onlyO(N). The Levinson algorithm requires fewer flops than stan-
dard Gaussian elimination for all nontrivial systems (N > 1), but in our experiments using
MATLAB on a standard Sun Ultra 5 workstation, the Levinson algorithm was slower (that
is in execution time) than the standard MATLAB dense linear system solve command for
systems of size less than aboutN = 150. The difference is due to the way MATLAB ’s built-
in linear algebra routines make use of the hardware and vary from system to system. The
choice of which algorithm to use at a given system size is thus likely to be both software and
hardware dependent, but the Levinson algorithm will always require fewer floating point
operations.

Note that if these schemes are applied on acurvedwire, then the resulting linear system
is not Toeplitz in general, even on a uniform mesh, and so the solution times and storage
will be O(N3) andO(N2), respectively.

In the uniform grid piecewise trigonometric collocation scheme of Section 2.3 we order
the unknownsaj , bj , cj into the solution vector asU = (a, b, c). The 3n× 3n coefficient
matrix A then has a densen× n block multiplying theaj coefficients, while the rest
of the matrix is sparse. The system can be condensed by eliminatingb and c, but the
densen× n matrix that results does not have a nice Toeplitz structure. Our experiments
in MATLAB indicate that it is faster to feed the full 3n× 3n mixed dense-sparse system to
the MATLAB sparse system solver than to eliminateb andc. However, the flop counts for
both approaches are essentially the same, with a computational cost ofO(N3) (where the
number of unknownsN = 3n).

3.5. Evaluating the Error Estimator for the Adaptive h-Method

The adaptiveh-method of Section 2.6 is based on an error estimator which requires
calculation of the norm of the residual over each mesh element0 j to obtain the quantities

η(0 j ,U ) = h1/2
j ‖LU − f ‖L2(0 j ),

for j = 1 : n, whereL is the operator corresponding to the IDE (1.1), i.e.,

Lu(z) ≡ − d

dz

∫ 1

0
K (z− z′)

du

dz′
(z′) dz′ − ω2

∫ 1

0
K (z− z′)u(z′) dz′.

The approximate solutionU (z) for this scheme is a piecewise linear function on the (nonuni-
form) grid with nodeszj , and hence the first part ofLU (z), is

d

dz

∫ 1

0
K (z− z′)

dU

dz′
(z′) dz′ =

n∑
j=1

(
U j −U j−1

zj − zj−1

)
[K (z− zj )− K (z− zj−1)]

=
n∑

j=0

Wj K (z− zj ), (3.7)

whereU j = U (zj ) and the weights are

W0 = −
(

U1−U0

z1− z0

)
, Wn =

(
Un −Un−1

zn − zn−1

)
, Wj =

(
U j −U j−1

zj − zj−1

)
−
(

U j+1−U j

zj+1− zj

)
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for j = 1 : n− 1. The integral in the second part ofLU (z) can be split into contributions
over each mesh element, but this is not necessary for our discussion and so we write

LU (z) = −
n∑

j=0

Wj K (z− zj )− ω2
∫ 1

0
K (z− z′)U (z′) dz′, (3.8)

and note that this function has logarithmic singularities at each node pointz= zj because
K (ρ) = O(log |ρ|) asρ → 0.

If we work to the same accuracy as in computing the coefficient matrix, the computational
effort required to obtain the value of the residual at a single pointz can be large. From (3.8)
we see that this requiresn+ 1 evaluations of the kernel, and an integral of the kernel
weighted by the approximate solution. This could take approximately the same time as
evaluating a complete row of the coefficient matrix. This calculation has to be repeated for
many different values ofz within each element to obtain an estimate of‖LU − f ‖L2(0 j ) by
quadrature, resulting in a computational cost for the error indicator functionη which is far
in excess of the cost of finding the approximate solutionU on a given mesh. Clearly it is too
expensive and unnecessary to work to high precision when evaluating the error estimate.
An accuracy of 1% (or even 10%) in evaluatingη is sufficient for the mesh adaptation
algorithm. We outline our approach below.

First we replace direct (and expensive) evaluation of the kernel functionK by the ap-
proximation

K̃ (ρ) ≡ 1

4π

e−i ω
√

ρ2+ 2a2√
ρ2+ 2a2

+ I1(ρ),

whereI1(ρ) is a piecewise linear function designed so that|K (ρ)− K̃ (ρ)|/|K (ρ)| < 10−3.
The choice of the first term iñK comes from the results of Section 3.1, where it is seen to be
a good approximation in its own right for large values ofρ/(2a). Secondly we approximate

∫ 1

0
K (z− z′)U (z′) dz′ ≈ I2(z),

whereI2 is a piecewise linear function satisfying

I2(zj ) =
∫ 1

0
K̃ (zj − z′)U (z′) dz′

at each of the space node pointszj . The integrals are carried out by adaptive quadrature as
in the calculation of the coefficient matrix, but working to a tolerance of 1%. Finally the
norm calculation is approximated by

‖LU − f ‖2L2(0 j )
≈
∫

0 j

∣∣∣∣∣
n∑

k=0

WkK̃ (zk − z′)+ w2I2(z
′)+ f (z′)

∣∣∣∣∣
2

dz′

and adaptive quadrature is used with a relative tolerance of 1%.



THIN WIRE SCATTERING 175

4. NUMERICAL RESULTS

4.1. Uniformly Refined Galerkin and Collocation Schemes

We begin by presenting results for the three uniform grid methods described in Sections
2.1–2.3 that use the uniform mesh refinement strategy of Algorithm 1. All of our numerical
tests have been run using a constant right-hand side functionf ≡ 1 in the IDE (1.1). Results
are summarized in Figs. 4.1–4.4: these figures are typical in that they illustrate the behavior
of the schemes both for large and smalla(10−2 and 10−6) and for low, high, and very low
frequencies(ω = 1, 100, and 0.01). They show the dependence of the relativeL2 solution
error on bothn (the number of mesh intervals) and the total flops and the dependence of
the flop counts for setting up the coefficient matrices and solving the linear systems onn
for each scheme. Each figure contains data computed withn = 2k for k = 2 : 12 (and so the
finest grid hasn = 4096 in each case). The numbers appearing as a legend in each graph
are the slopes of the respective plots, calculated as a least squares fit of the data (to four
significant digits) withn = 2k for k = 7 : 10 in the top right-hand graph andk = 8 : 12 for
the bottom two graphs of each figure. The absolute value of the computed solution is shown
for a range of radius sizes and frequencies in Fig. 4.5.

The relativeL2 errors for each approximation are straightforward to calculate from the
available data. Suppose thatU (n)(z) is an approximate solution computed with mesh spacing
h = 1/n (the coarse solution), andU (n∗)(z) is the approximate solution computed on the

FIG. 4.1. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigono-
metric (· · ·) schemes whena = 0.01 andω = 1.



FIG. 4.2. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigono-
metric (· · ·) schemes whena = 10−6 andω = 1.

FIG. 4.3. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigono-
metric (· · ·) schemes whena = 0.01 andω = 100.
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FIG. 4.4. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigono-
metric (· · ·) schemes whena = 10−6 andω = 0.01.

FIG. 4.5. Plot of absolute value of the solution|u(z)| againstz for various values ofa andω.
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finest available mesh with spacingh∗ = 1/n∗ (i.e.,n∗ = 4096 for each scheme). Letε denote
the difference between the coarse and fine solutions, and soε(z) = U (n)(z)−U (n∗)(z). For
the piecewise linear Galerkin and collocation scheme,ε(z) is a piecewise linear function
on the fine mesh, and so‖ε‖L2(0,1) can be calculated exactly in terms of the fine mesh
nodal values ofU (n)(z) andU (n∗)(z). The functionε(z) is piecewise trigonometric on the
fine mesh for the piecewise trigonometric collocation scheme, and its norm can be either
computed exactly using this representation or approximated by the norm of its piecewise
linear interpolant. For simplicity we used the piecewise linear approximation. The relative
solution error plotted in each of Figs. 4.1–4.4 is then taken to be

‖ε‖L2(0,1)

‖U (n∗)
G ‖L2(0,1)

,

whereU (n∗)
G is the piecewise linear Galerkin solution on the fine mesh (the same solution

is used to normalize each error).
As predicted by Rynne [18, 19], the convergence rate of the piecewise linear Galerkin

scheme appears to beO(1/n). The two collocation schemes also appear to exhibit first-
order convergence, as shown in the top right plots of Figs. 4.1–4.4. Note that the apparent
superiority of the piecewise trigonometric scheme in these graphs is somewhat misleading
since it uses three times as many unknowns as the other two schemes. The top left-hand
plots (flops vs. relative error) provide a fairer comparison.

As can be predicted from the number and complexity of the kernel integrals required for
the entries in the coefficient matrices (described in Section 3.2), the set-up flop count is
roughly proportional tons for somes ≤ 1, and for fixedn it is always lowest for piecewise
trigonometric collocation and highest for the Galerkin scheme. As discussed in Section 3.4,
the two piecewise linear methods use Levinson’s algorithm to solve the linear system,
and this is reflected in the quadratic growth of their linear algebra flop count withn. The
piecewise trigonometric scheme usesO(n3) flops for the linear algebra, which means that
if n is sufficiently large then this scheme will be less efficient than the other two. For small
n, however, the piecewise trigonometric approximation generally performs well, giving a
lower error than the other two schemes for a fixed flop count. The system size at which
the error and flop count for this scheme are roughly comparable to that for the Galerkin
approximation (i.e., where their respective curves in the top left graphs overlap) appears to
depend on bothω anda. At smalla the piecewise trigonometric scheme is uncompetitive at
all other than very coarse meshes. The piecewise linear collocation scheme does not work
well for low n whenω is moderately large, taking a long time to start converging.

The tests were repeated at very low frequency to compare the two versions of the piece-
wise trigonometric collocation scheme described in Section 2.3. The representation (2.9)
gives more reliable results for smallωh than (2.5), which is corrupted by rounding er-
rors. As a rough guide, whena ≈ 0.01 the relative size of the rounding error using the
representation (2.5) is very close to the relative difference between the floating point eval-
uations of (cosωh− 1) and−2 sin2(ωh/2) (see the end of Section 2.3). There are about
16+ 2 log10 wh significant digits of accuracy using (2.5) in standard 64-bit arithmetic and
rounding errors of≥1% whenwh ≤10−7. These rounding errors appear to be reduced
slightly whena is decreased.
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4.2. The p-, hp- and Adaptive h-Schemes

We now describe numerical results for the schemes of Sections 2.4–2.6 and compare
them with those for the uniform mesh Galerkin approximation obtained in the previous
section. Again we takef ≡ 1 in the IDE (1.1). Starting from an initial uniform mesh with
h = 1/4 (resp.h = 1/32 for thep- andhp-schemes whenω = 100) we used Algorithm 2
to compute a uniformp-method solution, used Algorithm 3 for the adaptiveh-method
solution, and calculated solutions for thehp-scheme on a sequence of six meshes using the
(end) element refinement parameterλ = 0.17.

We use the approximate solutionU (n∗)
G (z) obtained from the uniformh-scheme with

h = 2−17 (i.e., usingn∗ = 131072 elements) to calculate the relativeL2 error for each
scheme; i.e., the error is‖U (N) −U (n∗)

G ‖L2(0,1)/‖U (n∗)
G ‖L2(0,1). Figures 4.6–4.8 show plots of

the computed error against both the flops used and numberN of degrees of freedom for (a =
0.01, ω = 1), (a = 0.01, ω = 100), and (a = 1e− 6, ω = 0.01). The numbers appearing
as a legend in each graph are again the slopes of the respective plots, calculated as a least-
squares fit to the four most accurate solutions.

The upper two graphs of each figure show that in common with the schemes described
in the previous subsection, thep- and adaptiveh-schemes also converge algebraically for
largen. The numerically obtained convergence rate for thep-method agrees with the the-
oretically expected rate of 2. The adaptive mesh-refining strategy of Algorithm 3 increases
the convergence rate for the piecewise linear Galerkin scheme from 1 (for the uniform mesh

FIG. 4.6. Results forh-uniform (· · ·), p-uniform (– · –), h-adaptive (- -), andhp-geometric (—) Galerkin
schemes whena = 0.01 andω = 1.
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FIG. 4.7. Results forh-uniform (· · ·), p-uniform (– · –), h-adaptive (- -), andhp-geometric (—) Galerkin
schemes whena = 0.01 andω = 100.

approximation) to roughly 2, which is likely to be optimal for this finite element space. The
slope of the graph for thehp-scheme increases for increasingN, illustrating the exponential
convergence of this method.

It is interesting to note that if low accuracy (relative error≥10−3) is required, then the
h-uniform scheme is more efficient than theh-adaptive scheme in the tests. This is partly due
to the overhead in computing the error estimate and the additional costs of matrix assembly
and linear algebra on a nonuniform grid. Also theh-adaptive scheme seems to perform
badly at high frequency, perhaps because the grid adaptation strategy does not work well
until the highly oscillatory solution is well-resolved everywhere. However, the plots clearly
show that thehp-scheme is far more efficient than the others at moderate to high accuracies
and is at least as efficient at lower accuracy.

The figures also show the dependence of the set-up and linear algebra flop counts onN.
Note that the adaptiveh-scheme and uniformp-scheme are in general considerably more
expensive to set up than the other schemes. For thep-scheme this is presumably because
computing the matrix entries corresponding to high-degree polynomial basis functions
takes a long time. The reason for the adaptiveh-scheme is slightly more subtle: because
the “current” mesh for this scheme depends on all the previous meshes and solutions we
take the set-up flop count to be the sum of all the flops used to set up the linear system
and calculate the a posteriori error estimator on all previous meshes. Similarly, the linear
algebra flop count is defined to be the sum of all flops used in solving the linear systems to
obtain the solution on all previous meshes.
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FIG. 4.8. Results forh-uniform (· · ·), p-uniform (– · –), h-adaptive (- -) andhp-geometric (—) Galerkin
schemes whena = 10−6 andω = 0.01.

5. CONCLUSIONS

This paper provides a systematic study and comparison of numerical approximation
methods for the exact kernel form of Pocklingon’s thin wire equation. This is a difficult
computational problem, and we have described ways in which it can be tackled efficiently.

Our numerical results show that the theoretically predicted first-order convergence rate
[18, 19] for the uniform piecewise linear Galerkin scheme is achieved in practice. The two
collocation schemes described in Sections 2.2 and 2.3 also exhibit first-order convergence.
A second-order convergence rate can be obtained by using either an adaptiveh- or a uni-
form p-refinement strategy. The geometric (nonadaptive)hp-method whose predetermined
refinement strategy is designed to take known solution properties (the square root behavior
at the ends of the wire [18, 19]) into account is by far the most efficient of the algorithms we
have considered. As shown in Figs. 4.6–4.8 this scheme appears to converge exponentially,
its convergence rate increasing with the number of degrees of freedom. It has long been
known that grading the mesh appropriately to take account of singularities in the solution
can be used to obtain good convergence rates for numerical approximations of integral
equations (see for example [3] for a comprehensive survey).

One might be tempted to try an adaptivehp-algorithm to achieve even better results.
However, theh-adaptive algorithm of Section 2.6 requires repeated evaluation of the error
estimatorη which, although this can be speeded up tremendously as described in Section 3.5,
still imposes a considerable overhead on the calculations. Anhp-adaptive scheme would
suffer at least as badly, and so would probably be uncompetitive.
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Another way of tackling the end singularities is to augment the approximation space by
adding the two new basis functionsϕ0(x) = √x andϕ1(x) = √1− x. Rynne proves in [18]
that the convergence rate for the uniform piecewise linear Galerkin approximation can be
improved to second order if this is done correctly. Even though this type of approximation
may well be more efficient than either of the second-order schemes considered here, its
algebraic convergence means that it cannot compete with thehp-scheme.

We conclude with a short list of recommendations for anyone who wants to compute the
current induced on a perfectly conducting thin wire.

• Use the exact kernel form of Pocklington’s equation to model the problem (the Hallen
form has some undesirable properties [11, 20], and the reduced kernel problem is ill-posed
[21]).
• Evaluate and integrate the kernel as efficiently as possible (Sections 3.1 and 3.2).
• Use the nonadaptive (end-refined)hp-method of Section 2.5 to obtain high-accuracy

solutions efficiently.
• If low accuracy (relative error≥1%) is sufficient, then the uniform grid piecewise

trigonometric collocation scheme of Section 2.3 is an efficient method.
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