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This paper contains a systematic study of numerical approximations for solving
the exact kernel form of Pocklington’s integro-differential equation for the current
induced on a thin wire by an incident time-harmonic electromagnetic field. We con-
sider various Galerkinh, p, hp, and adaptivén) and collocation schemes and show
that a sensiblénp refinement strategy provides a very efficient way to solve the
problem. We also describe how the kernel (itself a difficult singular integral) can be
evaluated reliably and efficiently. © 2001 Academic Press
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1. INTRODUCTION

Calculating the current induced on a thin wire by an incident electromagnetic field is
important problem with a long history (see for example [12, Chapter 6] or the introducti
of [22]), dating back to Pocklington’s paper of 1897 [17]. The computational problem f
been widely studied (see [2, 5, 12, 16] and the references therein), although few aut
have carried out systematic comparisons of various different approximation techniques.
1975 paper [5] does this to some extent, but its scope is restricted by the limited compt
power and analytical techniques available at that time and by the fact that it deals witl
ill-posed version of the problem. Here we carry out a thorough study of various differ
approximation schemes for the difficult exact kernel form of the problem, describing h
they can be implemented efficiently and reliably enough to be useful in practice.

Itis vital that any numerical scheme used to compute the induced current is both acct
and efficient. Efficiency is significant because the problem (an integro—differential equati
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is necessarily computationally intensive and because it often appears as a module in a |
more complicated code (e.g., the computational electromagnetics code NEC [4]). Th
also one reason why the current needs to be computed accurately (i.e., reliably four
within a given tolerance). Another reason is that it is important to be able to evaluate
errors introduced in the derivation of the thin wire model to determine when it is vali
Modeling errors can only be identified when numerical errors are essentially elimina
from the computed solution.

Here we consider the canonical problem of computing the current induced on a stra
thin wire by the time-harmonic electric fieE(x)e “. However, the solution techniques we
develop and use could be extended to deal with curved wires, although the implement:
will be significantly more complicated and costly in computer time. We note also that it
relatively straightforward to calculate the scattered field once the current flowing along
wire is known (this is described for example in [10]).

Suppose that the wire has unit length and radiug 1 and lies along the-axis, where
X = (X, Y, 2); i.e., it occupies the regionV = {(x,y,2) e R®: x2+y2 <a? z< [0, 1]}.
One of the most common formulations of the problem is Pocklington’s equation, whc
derviation is sketched in Section 1.1. This is the integro—differential equation (IDE) for t
axial component of the current

1
—(w2+d2/d22)/ K(z-Z)u@)dZ = f(2), (1.1)
0

where the right-hand side and kerneK are both known functions. Appropriate boundary
conditions are

u(0) =u(l) =0. (1.2)

Inverting the Helmholtz operator in (1.1) leads to the Hallen version of the problem
1 1 z
/ K(z—Z)u(Z)dZ = Acoswz + Bsinwz — —/ f(Z)sinw(z—7)dZ
0 ® Jo

interms of two constant& andB, which need to be chosen to satisfy the boundary conditior
(1.2). Both formulations of the problem are equivalent [11, 20], but as pointed out in th
two papers, solving Hallen’s equation numerically can give rise to unpredictable rest
The Hallen formulation of the problem is also much more restrictive in that it cannot eas
be extended to cover the case of curved wires (althouth this is possible in certain situati
see [15]), whereas Pocklington’s equation can be extended. From now on, we there
restrict attention to consideration of numerical schemes for (1.1), (1.2).
Many authors use theeduced kerneform of the IDE (1.1) in whichK = Kg given by

efiw«/p2+a2
47/ p? + a2

(see, e.g.,[4,5] and referencesin [2, 22]). However, siigand its derivatives are bounded
for all p € [0, 1], the mappindLg : L2(0, 1) — L2(0, 1) (whereL?(0, 1) is the space of
square integrable functions on (0, 1)) defined by

Kr(p) = (1.3)

1
LRU(Z) = —(0® + d2/d22)/ Kr(z — Z)u(z)dZ
0
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is a compact operator and hence has an unbounded inverse [13]. This means that th
(1.1) with this kernel is ill-posed (the solutiam does not depend continuously on the
dataf). The ill-posedness of the equation has significant implications for anyone trying
solve it numerically. Basically it means that (1.1) with kerKg cannot give a “sensible”
numerical solution unless the smallest space meshhsised in its discretization is large
compared to the radiusof the wire. Takingh to be too small results in the solution being
polluted by an oscillating error near the ends of the wire that grovsisiseduced (this is
illustrated for the reduced kernel Hallen problem in [2, Figs. 3.8 and 3.9]: similar rest
are obtained for Pocklington’s equation). A consequence of this is that it is not possibl
increase the accuracy of the approximation by refining the mesh, and indeed it is not «
what the computed “solution” actually represents. Although this has been known since
early 1950s [21], the reduced kernel model still appears to be used in many situations
For the reasons given above it is important to be able to compute the induced cul
accurately, and this is not possible using the reduced kernel. Hence we consider num
schemes for the more complicatedact kerneformulation of (1.1), in whichK = K¢
given by
1 [T e iov/pPraazsifo
ew) =322 |, v aatsits @ @y

This is a singular kernel, satisfyirge (o) ~ ﬁla In|p| forsmallp [16, 11]. Problem (1.1),
(1.2) with kernelK g has been shown to have a unique solution by Jones [11], and Ryt
[20] has proved that it is well-posed. Rynne shows thdt & LP (0, 1) (spaces are defined
in Section 1.2 below), then the solutionof the exact kernel form of (1.1) is continuous
and so the boundary conditions (1.2) are meaningful. He also proves that the solutior
square root behavior at the ends of the wire (u€z) = O(v/z(1 — z)) forz~ 0, 1).

In recent papers [18, 19], Rynne has derivedamdBig type inequality for the integro—
differential operator and used it to obtain rigorous convergence results for Galerkin app
imations of (1.1). Implementing Rynne’s scheme efficiently is nontrivial since it involve
computing double integrals involving the singular keridel, which is itself an integral. The
difficulties involved in evaluatind<g are well documented [16, 23, 24], and in Section :
we describe a new algorithm fa¢g that is both reliable and efficient. This section alsc
contains other implementation details. We describe several different numerical scheme
the exact kernel form of (1.1) in Section 2, some of which (piecewise linear Galerkin ¢
various collocation methods) have been used previously for the reduced kernel problem
others (thep, hp, and adaptivé methods) which have not. Numerical results are present
in Section 4 and discussed in Section 5.

We conclude this section with a brief derivation of the thin wire model (1.1), (1.2) anc
description of notation and function spaces used in the rest of the paper.

1.1. Derivation of the IDE (1.1)

We now sketch the derivation of the model (1.1), (1.2), showing the assumptions
resultin both the reduced and exact kernel forms. Full details are givenin [10]. An alterna
derivation is given by Tijhuigt al.in [22].

The currentinduced on the wire by the time-harmonic incident Egidée “t isué !, and
we assume that the current flows along the wire satbd) = u(x’)e, wheree, = (0, 0, 1).
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This means that the vector potentiakat R®is A(x)€“'e, whereA is given by the integral

N a—iox—X'|/c
g = o [ O g
7T Jaw X — X'|

over the surfac@)V of the wire, whergu is the permeability and the speed of light. The
z-componenE; of the scattered electric field is given by

(€?9%/02% + w?) A(X) = iwEs(X).

Assuming the wire to be a perfect conductor implies that the tangential component of
total (incident and scattered) electric field is zero on the wire’s surface and hence

—(€?3%/02% + ) A(X) = iwE(X),

for x € 3V, whereE is the z-component ofE. Making the change of variables; =
E/c, uy = puu, andw; = w/c(Sow; is the wavenumbek), and then dropping the subscripts
from E, u, andw results in the nondimensionalized equations

B 1 u(X/)efiw\xfx'\
and
—(8%/02% + 0*) A(X) = iwE(X). (1.6)

Note thatifthe wire haslength # 1, then the nondimensionalized frequengyorresponds
to kL and the nondimensionalized radaso the true wire radius divided bly.
The model (1.1), (1.2) is derived after making some further simplifying assumptions.

1. The wire is regarded as an open tube and hatcey, z) = Ofor (x, y, z) € 9WW and
ze {0, 1}.
2. Because the wire is thin, th&, y)-dependence of the electric field on the surface ¢
the wire is ignored: i.e., sdE(x) = E(z) for x € 9W.
3. The final simplification concerns the currenk).
(a) The surface current is also assumed to be azimuthally symmetric; xes,diV
then

_ u(2)
uix,vy,z = ora’
This implies that the terrtx — x| in the integrand of (1.5) can be written as

IXx — X'|?> = |(acos¢, asing, z) — (acos¢’, asing’, z)|?
= 2a”[1 — cosl¢p — )] + [z— Z/?

for someg, ¢'. After some manipulation this yield&(x) = Ag(2) for x € 3V, where
1
Ae(2) = / Ke(z—-2Z)u@)dZz
0

is given in terms of the exact kernklz defined by (1.4).
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(b) The reduced kernel formulation follows from regarding the current as acting
the wire’s midline, instead of on the surface (but still applying the electric field bounde
condition on its surface). In this case the integrand term in (1.5) is

X—X?=a’+|z— 7

whenx € aW, and it follows thatA(x) = Ar(z) where

1
Ar(2) = / Kr(z—-Z)u(z)dZ
0
for K defined in (1.3).

SubstitutingAg or Ag for A into (1.6) results in either the exact or reduced kernel fornr
of the IDE (1.1) respectively, where the right-hand sidé {g) = iwE(z). The boundary
conditions (1.2) follow immediately from assumption 1.

Note that the model used in the code NEC-4 [4] is for a closed tube and so inclu
an approximation of the wire end caps. In [4] the current is regarded as flowing along
wire’s surface and the electric field boundary condition is applied on the axis, again leac
to A = Ag given in 3(b) above.

1.2. Notation and Spaces

We conclude this section with definitions of the function spaces and norms needed ir
rest of the paper.

Suppose that! ¢ R™ for m= 1 or 2 (in most of the text) = (0, 1) € R). For any
1< p<ooletLPU) be the set of complex valued functioggor which the integral of
|g|P overU is finite, and define th&? norm

172
lgllLz) = (/u |g(X)|2dx)

in the usual way. The inner product of two functiohsindg € L2(U) is written as( f, g)
and defined by

(f79>=/u f(X) g(x) dx.

Additionally let H1(U) be the Sobolev space of functions whose generalized derivati\
up to order 1 belong th?(U).

We also require fractional order Hilbert spaces based on (0, 1). To this efidc|& be a
simply connected bounded domain whose bound&ys smooth curve, and lé4/2(5Q)
denote the (Sobolev) space [14]

HY2(0Q) = {ulsq:u € HY(R?)).
LetI" with T C 92 be a connected piece 8f2 and set
Y2y = {ue HY2(3Q) : suppu) C T'}

with associated normul| .2, (See [14]) ThIS spaceis usedin Section 2.6 Witk (0, 1).
A different but equivalent definition o (0 1) is given in [18].
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2. NUMERICAL METHODS

This section contains a description of several different numerical methods for the prob
(1.1), (1.2) withk = Kg. We shall only consider the exact kernel form of the problem fror
now on, and consequently drop the subsgriphd useK to denote the exact kernel (1.4).

We begin Section 2.1 with a description of the uniform mesh piecewise linear Galer
approximation that Rynne [18] has shown to be convergent. When implemented naively
method is extremely slow, and we identify ways in which it can be made efficient enougt!
use in practice. However, it is still slower than similar collocation schemes and two of th
are detailed in Sections 2.2 and 2.3. We also consider some more sophisticated finite ele
approximations (the, hp, and adaptivédn methods) in Sections 2.4-2.6, and we preser
and discuss numerical results for all these schemes in Section 4. Although using an ada
method may appear superficially attractive, the work involved in computing the residt
based error estimate is such that the scheme cannot compete with a sensible nonad
hpmethod like that described in Section 2.5. This and other specific implementation det
(how to evaluate and integrate the kernel (1.4) and how to perform the linear algebra)
described in Section 3. In all the methods that follow we ise represent the number of
subintervals of the wire (0, 1) used in the approximation, Binfbr the total number of
unknowns.

2.1. Piecewise Linear Galerkin

Multiplying the IDE (1.1) by a test functions(z) € H(0, 1) that satisfiesy (0) =
¥ (1) = 0 and integrating by parts gives

(f,¥) = (KDu, Dy) — 0?(Ku, ¥), (2.1)

where D = d/dz, (.,.) denotes the_? inner product (described in Section 1.2), and the
operatorK is defined by

1
Ky)(2) = /O K(z— 2)y(2)d2Z.

We use piecewise linear trial and test functions on a uniform mesh dfisiz&/n, defining
¢j(2) = ¢(z/h—]) for

(0 = {1—|t| if |t] <1
1o otherwise

Expandingu in terms of these basis functions as
n-1

u@@) ~UM(Z) =Y Uj¢;@) (2.2)
j=1

yields the linear system

(B—ow?C)U =1, (2.3)
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whereU = (Uy, ..., Up_0)7,f = ((f, ¢1), ..., (f,pn_1))T, and the components of the ma-
tricesB andC are given by

Bjk = (KD¢j, Dok), Cik = (Koj, dx).

The unknowns for the problem are the coefficientslpnd soN = n — 1 for this approx-
imation scheme.

Rynne [18] has shown that the scheme (2.3) converges to the solution of the exact pro
as the mesh-sizk — 0, when exact integration is used to evaluate the components
B andC. In practice the component integrals cannot be found analytically and have
be approximated. It is important for this to be done efficiently since they are all thre
dimensional (3D) integrals (because they invdivenhich is itself an integral). Fortunately
it is possible to use a simple 2D change of variables so that each component can be w
as a 2D integral. We illustrate how this can be done by looking at the natrix

It is straightforward to show tha; x = 2Vj_x — Vj_k-1 — Vj_kqarfor j,k=1:n-1,
where

1 1
Vms/ / K(h[x — X"+ m])dxdx,
o Jo

and henceB is a symmetric Toeplitz matrix whose entries are given in terms of trip
integrals. Using the change of variabkes x — x', s = X + x’ means that th¥, can be
written as

1
vm=/ (1 - 9){K (h[m + s]) + K (h[m — s])} ds. 2.4)
0

Therefore in order to computB, it is necessary just to evaluate thedouble integrals
Vm,m=0:n—1in(2.4). The same procedure can be used to evaluate the componen
C, which reduce t&€; x = W;_x where

2
W = [y @K (hm-+ ) + K (h[m - s} ds
0
andy is the twice continuously differentiable function defined by

(5—23—32+§) for0<s<1

2-9°
6

v(s) =
forl<s<?2

The integralsVy, andW,, can either be evaluated by a 1D quadrature formula that us
values ofK (this involves first approximating the kerni€l), or by using 2D quadrature for
the double integral. Both approaches have been compared and the most efficient app
that we found is to evaluaté€ explicitly and use 1D adaptive quadrature (details are give
in Section 3).

Thus the linear system (2.3) can be written as

AU =T,
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whereA = B — »?C is a symmetric ToeplitN x N matrix. As discussed in Section 3.4,
the fact thatA is Toeplitz means that Levinson’s algorithm can be used to solve the line
system efficiently for largd&N (see also [22]).

The method is applied by successively halving the mesh size (i.e., domlingil two
approximate solutions are sufficiently close together inltRenorm. The algorithm for
the method is summarized below. Other Galerkin schemes have been considered fc
reduced kernel form of (1.1) in [5, 12].

ALGORITHM 1

1. Choose an initial uniform grid with elements (e.g., use= 4) and a tolerance.

2. Setthe mesh spacing tolbe= 1/nand compute the approximate solutldgy = U™
on this mesh.

3. Semn := 2n, h = 1/nand compute the approximate solutldg,, = U ™ on this finer
mesh.

4. If |Unew — UoidllL2¢0,1) < T thenterminate the calculation. Otherwiseldgf := Unew
and return to 3.

2.2. Piecewise Linear Collocation

Collocation is another popular way of solving (1.1) and often has the advantage that
matrix elements are faster to evaluate than for the corresponding Galerkin scheme [5,
However, there are no convergence results for collocation schemes of the type giver
Galerkin schemes in [18, 19].

The first collocation scheme we consider also uses the expansion (212)rfderms
of the piecewise linear basis functios given in the previous subsection (and so agail
N = n — 1, where the mesh spacinghis= 1/n). This is substituted into the IDE (1.1),
and a second central difference is used to approximate the second derivative. The resi
equation is forced to be satisfied at the node padipts jh to yield

n—-1

k=1

1 1
{hz/o [K(Zj+1—Z/)_(2—h2w2)K(Zj —Z/)-I-K(Zj_l—Z,)] (f)k(Z,)dZ,}Uk: f(ZJ')

for j =1 :n— 1. Once the integrals are approximated (see Section 3.2 for details) t
scheme also reduces to a symmetric Toeplitz linear systdn= f (for a different matrix

A and where heré = (f(z1), ..., f(z,)7). The method is again applied with a uniform
(halving) mesh refinement strategy, and is identical to Algorithm 1.

2.3. Piecewise Trigonometric Collocation

Other basis functions have often been used to solve (the reduced kernel form of) (
[5, 4, 12], and one of the most popular of these is the set of piecewise trigonometric b
functionsy; defined on a uniform mesh with spacihg= 1/n by

aj +bjsinw(z—zj_12) + ¢jcoOsw(z — zj_1/2) fze[zj_1,Z))
%‘(Z):{ ] ] -1/ J -1/ | ] (2'5)

0 otherwise

wherez, = khand the constants, b; andc;, j = 1 : nare the unknowns for the problem
(soN = 3n for this type of approximation).
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The currenu is expanded in terms of these basis functions as

N-1

u@) ~ Y @)

=1

The two boundary conditions (1.2) are enforced by

a1 — by sin(wh/2) + ¢, cogwh/2) = 0} (2.6)

an + b, sin(wh/2) + ¢, cogwh/2) = 0

and both the approximate current and its first derivative are forced to be continuous fo
Z € (0, 1) by assuming the unknowns to satisfy

aj + b; sin(wh/2) + ¢; coswh/2) = aj41 — bj;1sin(wh/2) + ¢j41 cogwh/2) 2.7)
b; sin(wh/2) — ¢j coswh/2) = —bj 1 sin(wh/2) — ¢j 1 cogwh/2) '

for j =1:n— 1. Together (2.6) and (2.7) comprisa 2quations, and the remainimg
equations are obtained from the IDE (1.1). The approximate current is substituted intc
IDE to give

n 2
= @+ D2)/ ' K@z-2) (aj + bj sino(Z - zj_1/2)
=1 41

+¢jcosw(Z — zj_12)) dZ = f(2),

whereD = d/dz Integrating by parts separately on each subinterval (using the contint
of uandDu on (0, 1)) then gives

K(z—1)Du(l) — K(2)Du(0) _wZZaj / j K(z—-27)dZ = f(2), (2.8)

j=1 Zj-1

where note that the integrand is particularly simple because the sine and cosine terms
basis function are annihilated by the Helmholtz operator in (1.1). This equation is assu
to hold at the patch midpoints= z;_1,2, j = 1 : nto give a system af equations involving
the integrals

"1/2
/ K(h[m-s])ds, m=0:n-1.
—1/2

The full linear system comprises (2.6), (2.7), and (2.8) at the patch midpoints, and w
in which it can be solved most efficiently are discussed in Section 3.4. This collocat
scheme is also applied with a uniform (halving) mesh refinement strategy and hence is
that given in Algorithm 1. Numerical results are presented in Section 4.

We note that the alternative representation of the basis functions in the piecewise trig
metric scheme as

¥i(2) = aj + b; sinw(z — Zj_1y2) + C} (cosw(z—zj_12) — 1) if ze [Zj_l, zj) (2.9)
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is used in NEC-4 [4] to deal with rounding error problems in low-frequency simulation
This is because ces(z — zj_12) ~ 1 at low frequency and the independence of dhe
andc;j cosw(z — zj_1/2) terms in (2.5) is destroyed by rounding errors. In contrast, th
independence of tha} and c/j (Cosw(z — zj—12) — 1) terms in (2.9) is maintained for
smallw if the identity cosx — 1 = —2sirf(x/2) is used in numerical evaluation to avoid
rounding errors.

2.4. Uniform p-Method

The three methods discussed above have all been refined by reducing the mest
according to Algorithm 1, keeping the basis functions unchanged apart from a scaling.
p-method instead involves using a fixed grid throughout the calculation and is refined
increasing the degree of the piecewise polynomial basis functions used.

The initial approximatiorip = 1) is the piecewise linear Galerkin solution of Section 2.1
on a uniform grid with mesh-size= 1/n (where e.g.n = 8). Higher order approximations
are obtained by augmenting the piecewise linear test and basis fungiions=1:n
by higher degree polynomial bubble functions. These are taken to be anti-derivative
Legendre polynomials defined on the intervall] 1] and then mapped onto each elemen
[zj-1, zj] (where agairz, = kh). The p — 1 bubble functions for the method of degree
p > 1 are defined (on the canonical intervall, 1]) by

qok(s>=\/k+1/2/ P)de, fork=1:p—1
-1

where Py is the Legendre polynomial of degr&eNote that each of these are zero at the
endpointss = +1. Other nice properties of these functions are described in [9].

The p — 1 bubble functions associated with thi interval arep; (z) fork =1: p—1,
where

(@) = w(2z/h+1-2j) if ze[zj_1, 7]
Ykt =19 otherwise

For ease of notation we relabel the “hat” functions of Section 2.¢;as ¢; 0, and we
expand the current in terms of the hat and bubble basis functions as

n p-1

u@) ~UP (@) => "> Ujkpjr(@).

j=1 k=0

Note that each of the basis functions is continuous on the whole interval [0, 1] and that
approximation automatically satisfies the boundary conditions (1.2). The unknowns are
N = npconstantdJj, for j =1 :n,k =0: p — 1. Taking the test functiog¥ in the inner
product (2.1) with each of the basis functiapg, then yields arN x N linear system of
the form

AU =f, (2.10)

where U= (U, ..., Uy, p-1,U20, ..., U2 p_1,...,Uno, ..., Un,p_l)T, and f =(fyo,
. fn,p_l)T for fj,k = (f, ®jk)-
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The algorithm is summarized below. It uses a stopping criterion based &3 tierm of
the difference between two successive approximations but this is not the only possibil

ALGORITHM 2

1. Choose a fixed uniform grid with mesh-spacm¢e.g.,h = 1/8), and a tolerance,
and setp = 1.

2. Compute the approximate solutiblyy = U® using the piecewise linear Galerkin
approximation on this grid.

3. Setp := p + 1, and compute the approximate solutigga,, = U P using the hat and
bubble basis functions of degree upp@s described above.

4. If|Unew — UoidllL20,1) < T,thenterminate the calculation. Otherwiseldgd := Unew
and return to 3.

2.5. Nonadaptive hp-Method

The hp-method involves refining both the size of (some) grid elements and the deg
of the piecewise polynomial basis functions according to a predetermined strategy.
initial approximation(p = 1) is again the piecewise linear Galerkin solution of Section 2.
on a uniform grid with mesh size = 1/n (where e.g.n = 4 or 8). The strategy used to
generate successive approximations of increasing accuracy should be based on know
of properties of the exact solutian Becausel behaves like a square root near the ends «
the wire but is otherwise smoother [20], a sensible strategy is to subdivide the elemer
the two ends of the mesh (i.e., those that contain the points 0 and 1), and increase the ©
of the bubble basis functions in all other elements by 1.

Suppose that the current mesh is leket 1 and hasi®? (not necessarily uniform)
intervals with mesh points

2V, j=0:nkD

where

(k=1) (k-1
2 =0, Zuy =

Denote thejth interval by ¥ = [2", Z*"V] and suppose that the degree of basi

functions used on the mtervﬁl(k bis p]k b We always use degree 1 polynomial basi
functions at the two ends of the wire, so thn%i U = p=d = 1 for anyk. The refinement
strategy to obtain the levél mesh-points and basis functions is to choase (0, 1) and
then

e setn® = nk-D 4 2

oif j =1,

rd = [0.2250], p =1
F(k) [kZ(k 1 gk—l)]’ pg() — p(K iy) +1=2
o ifl <j<nkD,

K (k=1) (k) (k=1) .
Fma =Ty 7 P = pl +1
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1 1 1 1
k=1 o © © © 2]
1 2 2 2 2 1
k=2 o © < © © © )
12 3 3 3 3 21

k=3 oe——-o © S < O0—0-©

FIG. 2.1. The first three levels of mesh and basis refinement for the (nonadaptiv@gthod starting with
a uniform mesh with four intervals whdn= 1. The circles represent mesh points and the degree of polynomi
basis function used in each interval is written above it.

o if j =nk-D,
(k) (k 1) Kk (k) -1
Fhw_ = [ k- 0wt )] Prw_1 = pn<k y +1=2
k k
Fr(1(I<)> = [M(k)’ 1] pr(1<l<)) =1

where 1— pgy = A[1 — (lfk 1.

In calculations we usedl = 0.17 motivated by [7] and numerical experiments to obtai
nearly optimal (exponential) convergence. The first three levels starting from a unifc
mesh withn® = 4 are shown in Fig. 2.1.

The method is also applied repeatedly until two successive approximate solutions are
ficiently close in the.?(0, 1) norm.

2.6. Adaptive h-Method

The final scheme that we consider is adaptive—it uses the piecewise linear Gale
algorithm of Section 2.1 on a nonuniform mesh that is chosen in order to minimize
estimate of the error in the computed solution. As in the previous subsection we denote
meshintervals by';, j = 1 : n, and seh; to be the length of the interval;. This adaptive
strategy needs an a posteriori error estimatnd a reliable estimate based on the residu
is given by Rynne in [18],

(T}, U) = h?ILU = ), (2.11)
wherelL is the operator corresponding to the IDE (1.1), i.e.,
Lu(z) = _d /1 K(z— z’)ﬂ(Z)dZ — 2/1K(z— Z)u(z)dz
- dz 0 dz @ 0 '

Rynne shows that the difference between the exact solutipnand its Galerkin approxi-
mationU (z) on a particular mesh satisfies

n
lu—U HZH”Z(o,l) =C Z”(Fi’ U2,
=1

whereC is a constant independent of the mesh.
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The mesh and solution are computed according to the following algorithm, which ag
uses a stopping criterion based on ttfenorm.

ALGORITHM 3

1. Choose an initial coarse meEﬁ), j=1:n® (e.g., sen® =4 and let eaclh; =
1/n®), and a tolerance and initialize the level td = 1.

2. Compute the approximate solutiblyy = U® using the piecewise linear Galerkin
approximation on the coarse mesh.

3. Foreachj = 1:n® computen( = n("{?, U®) and sep®™ = max 4 <nw 0.

4. Refine (halve) the elemen{” if 5 > 0.57® to obtain a new mesh{*V, j =1:
nk+D

5. Setk := k + 1, and compute the Galerkin solutibhe, = U® on the current mesh
(r{y.

6. If [Unew — UoidllL2¢0,1) < T, then to terminate the calculation. Otherwiseldgy :=
Unew and return to 3.

Note that the estimatgin (2.11) must be computed on any given mesh. This is comput
tionally intensive since it involves the evaluation of 3D integrals. Ways in whichn be
approximated efficiently are discussed in Section 3.5.

3. IMPLEMENTATION

This section contains a description of some of the specific implementation details for
algorithms of Section 2. One of the most important and difficult parts of any of these al
rithms is the evaluation of the exact kernel (1.4) and its integrals weighted by polynomi
We begin with two sections describing how this can be done both accurately and efficiel
the first considers the efficient evaluation of (1.4) and the second deals with the integrals
are needed to construct the coefficient matrix for each algorithm. We next look at effic
techniques for solving the various linear systems that arise, and in the final section we
amine ways in which the computational effort involved in approximating the error estima
n used in théh-adaptive algorithm of Section 2.6 can be reduced. We note that [4] conta
a discussion of implementation issues for integrals involving the reduced kernel (1.3).

3.1. Evaluation of the Exact Kernel

We first rescale the exact kernel (1.4) with respect to the wire radius, rewriting it as

K(p) = F(p/(28), 2a0),

4ar?
where

/2 e—ivR
F(u,v) = / do, (3.1)
s R

R = R(}, 6) = /A2 + sir? 0, the scaled distance variable is

) = p/(2a),

and the scaled frequency is

v = 2aw.



168 DAVIES, DUNCAN, AND FUNKEN

To establish some properties of the scaled keFhele follow [16, 23, 24] and split it
into two parts,

/2 1 /2 (efivR _ 1)
F(Z,v):/ fd9+/ =~ de,
o R Jo R

noting that the second term is bounded (its integrand is bounded) and that the first tern
be written as

/”/2 ! do = ! EIIipticK( = )
o R VaZx1 VaZx1)’

where EllipticK is the complete elliptic integral of the first kind (there is no simple expressi
for the second term). This yields the well-known result (see, e.g., [16, 11])

K(p) = O(n|p]) asp — 0,

since EllipticK has a logarithmic singularity as its argument approaches 1. More detail:
the properties oK can be found in [18, 20].

This singularity is the main source of difficulty in evaluating the scaled kefndlhe
degree of difficulty in calculating at a value o (for fixed v) is roughly correlated with
the ease or difficulty in computing EllipticK {4/A2 + 1) (i.e., hard wher is small and
relatively easy for large). There are also problems wherns large, since then the kernel
is highly oscillatory. We have found that the most efficient strategy for evalu&tirggto
treat the small and large cases separately, combining them in a single kernel evaluati
subroutine. We begin with a description of the easier case.

Largei. We first rewrite the scaled kernel (3.1) as

R /2 e—iv(R—R*)
Fon=et® [ 50— do, (3.2)

whereR, is the midpoint value,/A2 + 1/2. An accurate estimate &f for large can be
obtained by applying the composite trapezoidal rule Witlintervals to the integral (3.2),
repeatedly doublingyl until the relative difference between two successive approximatiol
is smaller than some predefined tolerancgtypically r = 10-1?). Very accurate results
can be obtained by using moderately low valued/ifas shown in Fig. 3.1 (the accuracy
depends on the scaled frequengy This is presumably because away fram= 0 the
integrand is a smooth, periodic (#) function. Thee '*® term is extracted to improve
the accuracy of computing the complex exponential term in the integrand when the sc
frequencyv is large. We also use the identity

R_R = 00%0/2
2(R+R))

to reduce rounding error problems whgris very large, since the direct calculation of

R — R, in standard 64-bit arithmetic gives only about-1& log,, 2 significant digits of

accuracy fon € [1, 108]. All precision is lost forx > 10P.



THIN WIRE SCATTERING 169

Relative error Relative error
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FIG. 3.1. Relative error against scaled distander various simple approximations of the exact kernel (1.4).
The approximations are: reduced kernel (1.3) (-), single interval midpoint rule (3.3) (- -), trapezoidal rule v
2(-.), and 4 (:) subintervals. Results are shown for a small- and large-scaled frequency

Various authors [5, 16] use the reduced kernel (1.3) to approximate the exact kernel (
and Fig. 3.1 shows that it is a good match.as- co. However, it is interesting to note from
the figure that the approximation

(3.3)

obtained by a single interval midpoint rule approximation of the integral (3.2) gives e\
better results for the same computational effort at large

Smallx. When the scaled distance argumgns small, the logarithmic singularity in
the kernel dominates its computation. The most efficient way we have found to evalua
is to treat the real and imaginary parts separately, writing the scaled kernel as

7/2 coqvR . (™2 sin(wR
F(k,v):/ %de—u/ '(F‘; ). (34)
0 J0
=F1(A,v) =F(x,v)

The termF,(z, v) can be efficiently evaluated to any required accuracy by the compos
trapezoidal rule, which again exhibits superconvergence as the number of subdivisio
increased.

We needed to use a more sophisticated approximation strate§y.fAs noted above,

Fi(x,0) = \/Azl——i-l EllipticK <J)@1—4-1>
A standard form for the elliptic integral is
! dt
EllipticK () = /O \/(1_ oD forO<l1 <1, (3.5)

and hence Elliptick0) = = /2. Care is required in evaluating this integral when the argt
mentl ~ 1, and a standard method used in mathematical software libraries for evalua
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EllipticK uses the Landen transform

C1-vi-12 t__(1+k)t
T 14+V/1-120 7 1+4kt?

(see [8, p. 250] for details) in (3.5) to obtain the identity
EllipticK (I) = (1 + k)EllipticK (k).

Note that O< k < | < 1, and so the transform converts the elliptic integral to one with
smaller argument. This identity can be used repeatedly to obtain

1- /1K

1+ /1K

and, sinc&k, — 0 asn — oo, the process is terminated in floating point arithmetic whe
kn is small enough to ensure thak(1 + k,) = 1, giving

EllipticK (Ko) = (1 + k1) (1 + ko) . .. (1 + ko) EllipticK (Ky),  kj41 =

f1(EllipticK (ko)) = (1 + ki) (L + ko) ... (1 + kn)%

to machine precision. This approach is also called the method of arithmetic-geome
means [1, Section 17.6].

We have found that the Landen transform is also an efficient method for calculating
real partF; of the kernel in (3.4). Using the change of variable cosf gives

Jo(t) dt

kO / \/ kgtz (1 )

Fl()», V)

where

_ 1 _ @ J 202
ko_1~|-22 and go(t)_cos(k0 1 kot).

We then use the Landen transform

K 1- V 1_le2 gia(t) = <1+kj+1t) . 1+ Kjqat
]+1=7’ ]+1 —_— —_—
/ 2 1+ ki qt? 1+ ki qt2
1+ 1—kj j+1 j+1

for j =0,1,...toobtain

FL(h,v) = ko/ go(t) dt
\/1 K2t2) (1 — t2)

— Ko(1+ k) / o dt
\/ 1—K2A2)(1—12)

— kot ko). (1+k>/ Gn(®) dt
\/1 K2t2) (1 — t2)
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where the sequendg is the same as for EllipticK. The process again terminates wh
fl1(1+ k,) = 1 giving

n

/2
/ On(sind) do
0

to machine precision, and the final integral can be approximated using the composite tr
zoidal rule.

: b gn(t) dt
fI(Fi(A = 1+Kk; = 1+Kj
(F1(x, v) kOj];[l( + J)/O Wipsr koj[[l( +k;)

Switching between small and largenethods. We carried out numerical tests to measure
flop counts for both the small and largesvaluation methods described above, over a larg
range of values of and for a wide range of scaled frequenacie$n general both schemes
are roughly equally efficient for the middle valuesigfand for largen. the direct (large.)
method is more reliable (because it takes care of rounding error problems) and is abou
times faster than the Landen transform (smalinethod. For small the direct method is
extremely inefficient compared to the Landen transform method. Taking into account
effects of the scaled frequeneyon the flop count for the calculations, we use the Lande
transform method when

10

A = Aswitch(V) = m

and the large. method otherwise. This is simply a rule of thumb, safeguarded by favori
the Landen transform (smal) method for the reasons give above.

3.2. Efficient Evaluation of the Integrals in the Coefficient Matrices

The coefficient matrices generated by the numerical methods described in Secti
require the evaluation of integrals of the form

1
|p=/ K(sh+o)P(s)ds, (3.6)
0

whereP(s) is alow-order polynomialy = £z; (node point) oe-z;,1,» (element midpoint),
andh is the length of the mesh interval. The exact details depend on the scheme, an
note that none of the integrals required for any of the schemes gives a simple closed
expression. We must therefore use numerical approximation.

The main problem in approximating (3.6) is again the singular behavior of the ker
functionK. There are many ways to approximate (3.6), ranging from a direct approximat
by a 1D adaptive quadrature package, suatdsJirfrom NAG, to substitution of the kernel
definition (1.4) into (3.6) followed by a direct approximating of the resulting 2D integr
by a 2D adaptive quadrature method, such as the NAG rootecr. An intermediate
strategy is described in [23].

After much experimentation with these various approaches, we conclude that an effic
way to approximate (3.6) for all the cases required is to split it into a singular anc
nonsingular integral and use adaptive 1D quadrature on each part separately. We first

1 1
lp = / (K(sh+o0) — Ko(sh+a))P(s)ds+/ Ko(sh+o)P(s)ds,
JO 0

=lp1 =lp2



172 DAVIES, DUNCAN, AND FUNKEN

where

Ko(p) = {27112?1(_'°9|2pa| +]&1-1), lpl<2a

0, otherwise

is continuously differentiable for alp| # O (including|p| = 2a) and has the same leading
order behavior aK (p) asp — 0. The integral p; is simple enough to evaluate explicitly,
and the integrand dfp; is (following [18, 20]) continuously differentiable, and &g, can
be tackled directly by an adaptive 1D quadrature routine, such as the NAG roQtingr.

3.3. Matrix Assembly in the p-, hp-, and Adaptive h-Schemes

In the p-method of Section 2.4 the mesh is fixed and enhancing the approximation fr
degreep to p + 1 only requires the additional calculation of

(K¢jp,om) forj,l=21....,nm=0,...,p

rather than the recalculation of the complete matrix. Thus the coefficient matrix is sim
extended as the degree of the approximation in each element increases.

The mesh in the adaptivie-scheme is refined at the ends as the scheme progres:
but most of the elements remain the same from step to step and so their contributic
the coefficient matrix does not change. To avoid duplicated effort we store the elen
submatrices, modify them to cope with the local changes in the mesh, and assemble th
coefficient matrix from them at each step.

Thehp-scheme uses both of these strategies.

3.4. Linear Algebra

The end result of each of the methods described in Section 2 is a linear system of equa
AU =f,

where the vectdd contains the unknown coefficients used in the approximate solution, a
vectorf is generated from the known incident field function in (1.1). The details depe
on the scheme. In general there is no special structure to be exploited in the linear alg
required for the nonuniform grid schemes, and we use a standard Gaussian elimin:
solver (the M\TLAB backslash ) operator) in this case. This requir€N?) flops and
storage for theN? (complex) entries in the matrix. However, the uniform grid schemes c
have a special structure which can be used both to speed up the solution of this linear sy
from O(N?) to O(N?) flops, and to reduce the storage required floeN?) to O(N). We
examine this below.

The uniform grid piecewise linear Galerkin and collocation methods of Sections 2.1 ¢
2.2 result in a dense system of equations with symmetric Toeplitz structure. That is,
N x N coefficient matrix has entries

Ajk = ajjk-

The complex constantss,s=0,..., N —1 depend on the method used. Symmetri
Toeplitz systems can be solved using Levinson’s algorithm [2, 6, Section 4F]N7)
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flops, compared t® (N?) flops by standard Gaussian elimination for dense matrices. Als
the storage required is on®(N). The Levinson algorithm requires fewer flops than star
dard Gaussian elimination for all nontrivial systerds £ 1), but in our experiments using

MATLAB on a standard Sun Ultra 5 workstation, the Levinson algorithm was slower (tl
is in execution time) than the standardaMAB dense linear system solve command fol
systems of size less than abdut= 150. The difference is due to the wayavLAB’s built-

in linear algebra routines make use of the hardware and vary from system to system.
choice of which algorithm to use at a given system size is thus likely to be both software
hardware dependent, but the Levinson algorithm will always require fewer floating pc
operations.

Note that if these schemes are applied @uavedwire, then the resulting linear system
is not Toeplitz in general, even on a uniform mesh, and so the solution times and sto
will be O(N?®) andO(N?), respectively.

In the uniform grid piecewise trigonometric collocation scheme of Section 2.3 we or
the unknownsy;, b;, ¢; into the solution vector a8 = (a, b, ¢). The 3 x 3n coefficient
matrix A then has a dense x n block multiplying thea; coefficients, while the rest
of the matrix is sparse. The system can be condensed by elimiratamgl c, but the
densen x n matrix that results does not have a nice Toeplitz structure. Our experime
in MATLAB indicate that it is faster to feed the fulh3x 3n mixed dense-sparse system to
the MATLAB sparse system solver than to eliminbtendc. However, the flop counts for
both approaches are essentially the same, with a computational c@$Ndj (where the
number of unknown# = 3n).

3.5. Evaluating the Error Estimator for the Adaptive h-Method

The adaptiveh-method of Section 2.6 is based on an error estimator which requi
calculation of the norm of the residual over each mesh eleingtd obtain the quantities

(T}, U) = hiILU — f 2.

for j = 1:n, wherel is the operator corresponding to the IDE (1.1), i.e.,
d ! / dU / 2 ! J /
Lu(z) = —— K(z—z)—(z)dz’—w / K(z—-Z)u@)dZ.
dz dz 0

The approximate solutidd (z) for this scheme is a piecewise linear function on the (nonun
form) grid with nodeg;, and hence the first part &U (z), is

d Ui —-U
d—Z'/ K(z—ﬂ—(z)dz Z( : ’1>[K(z—zj>—K(z—zj_1)]

P —Zi_1
= ZWJ- K(z-z), (3.7)

whereU; = U (z;) and the weights are

Wy — _(ul—uo) W, — (un—un_l), W, = (Uj —Uj-1> B (qu_uj)
71— 2o Zy — Zn-1 Zj —Zj Zjy1 — Zj




174 DAVIES, DUNCAN, AND FUNKEN

for j =1 :n— 1. The integral in the second partlbll (z) can be split into contributions
over each mesh element, but this is not necessary for our discussion and so we write

n 1
}L,U(z)=—z:WjK(z—zj)—w2/0 K(z-272)U(Z)dZ, (3.8)
j=0

and note that this function has logarithmic singularities at each node peirt; because
K(p) = O(log|pl) asp — 0.

If we work to the same accuracy as in computing the coefficient matrix, the computatio
effort required to obtain the value of the residual at a single dan be large. From (3.8)
we see that this requiras+ 1 evaluations of the kernel, and an integral of the kerne
weighted by the approximate solution. This could take approximately the same time
evaluating a complete row of the coefficient matrix. This calculation has to be repeated
many different values af within each element to obtain an estimate{bt) — f || 2, by
guadrature, resulting in a computational cost for the error indicator fungtwinich is far
in excess of the cost of finding the approximate solutioon a given mesh. Clearly it is too
expensive and unnecessary to work to high precision when evaluating the error estin
An accuracy of 1% (or even 10%) in evaluatings sufficient for the mesh adaptation
algorithm. We outline our approach below.

First we replace direct (and expensive) evaluation of the kernel funétitay the ap-
proximation

5 1 e'®y/p2+2a2
Ro) = — X225 1 15p).

At \/p? + 2a2

wherel(p) is a piecewise linear function designed so tiatp) — K (0)|/|1K (p)| < 1072,
The choice of the first term iK comes from the results of Section 3.1, where itis seen to't
a good approximation in its own right for large valueggt2a). Secondly we approximate

1
/ K(z—-2)U(Z)dZ ~ 15(2),
0

wherel, is a piecewise linear function satisfying

1
|2(z,»)=/ K(z; — 2)U(Z)dZ
0

at each of the space node poinfsThe integrals are carried out by adaptive quadrature :
in the calculation of the coefficient matrix, but working to a tolerance of 1%. Finally tf
norm calculation is approximated by

2

Zwkk(zk —2) +wly(Z) +f(2)| dZ
k=0

i

and adaptive quadrature is used with a relative tolerance of 1%.
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4. NUMERICAL RESULTS

4.1. Uniformly Refined Galerkin and Collocation Schemes

We begin by presenting results for the three uniform grid methods described in Sect
2.1-2.3 that use the uniform mesh refinement strategy of Algorithm 1. All of our numeri
tests have been run using a constant right-hand side furfctioh in the IDE (1.1). Results
are summarized in Figs. 4.1-4.4: these figures are typical in that they illustrate the beh:
of the schemes both for large and snaatL0~2 and 10°®) and for low, high, and very low
frequenciegw = 1, 100, and 0.01). They show the dependence of the relafslution
error on bothn (the number of mesh intervals) and the total flops and the dependenc:
the flop counts for setting up the coefficient matrices and solving the linear systems ¢
for each scheme. Each figure contains data computedwitt2" for k = 2: 12 (and so the
finest grid hash = 4096 in each case). The numbers appearing as a legend in each g
are the slopes of the respective plots, calculated as a least squares fit of the data (tc
significant digits) withn = 2 for k = 7:10 in the top right-hand graph akd= 8 : 12 for
the bottom two graphs of each figure. The absolute value of the computed solution is st
for a range of radius sizes and frequencies in Fig. 4.5.

The relativelL? errors for each approximation are straightforward to calculate from tl
available data. Suppose thaf" (z) is an approximate solution computed with mesh spacin
h = 1/n (the coarse solution), ard™ (z) is the approximate solution computed on the
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FIG.4.1. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigot
metric (- - -) schemes whea = 0.01 andw = 1.
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FIG. 4.2. Results for piecewise linear Galerkin (—), piecewise linear collocation (- -), and piecewise trigor
metric ( - -) schemes whea = 10® andw = 1.
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finestavailable mesh with spacihj= 1/n*(i.e.,n* = 4096 for each scheme). Letlenote
the difference between the coarse and fine solutions, angse= U™ (2) — U ™) (2). For
the piecewise linear Galerkin and collocation schesig), is a piecewise linear function
on the fine mesh, and s/ 2 1 can be calculated exactly in terms of the fine mes|
nodal values ofJ ™ (z) andU ™) (z). The functions(z) is piecewise trigonometric on the
fine mesh for the piecewise trigonometric collocation scheme, and its norm can be ei
computed exactly using this representation or approximated by the norm of its piecey
linear interpolant. For simplicity we used the piecewise linear approximation. The relat
solution error plotted in each of Figs. 4.1-4.4 is then taken to be

llellz0,)
(n*) ’
IUg "Iz,

whereUé”*) is the piecewise linear Galerkin solution on the fine mesh (the same solut
is used to normalize each error).

As predicted by Rynne [18, 19], the convergence rate of the piecewise linear Galel
scheme appears to i2(1/n). The two collocation schemes also appear to exhibit firs
order convergence, as shown in the top right plots of Figs. 4.1-4.4. Note that the appze
superiority of the piecewise trigonometric scheme in these graphs is somewhat mislea
since it uses three times as many unknowns as the other two schemes. The top left-
plots (flops vs. relative error) provide a fairer comparison.

As can be predicted from the number and complexity of the kernel integrals required
the entries in the coefficient matrices (described in Section 3.2), the set-up flop coul
roughly proportional te® for somes < 1, and for fixedh it is always lowest for piecewise
trigonometric collocation and highest for the Galerkin scheme. As discussed in Section
the two piecewise linear methods use Levinson’'s algorithm to solve the linear syst
and this is reflected in the quadratic growth of their linear algebra flop countnwithe
piecewise trigonometric scheme uge@®) flops for the linear algebra, which means tha
if n is sufficiently large then this scheme will be less efficient than the other two. For si
n, however, the piecewise trigonometric approximation generally performs well, giving
lower error than the other two schemes for a fixed flop count. The system size at wi
the error and flop count for this scheme are roughly comparable to that for the Gale
approximation (i.e., where their respective curves in the top left graphs overlap) appea
depend on both anda. At smalla the piecewise trigonometric scheme is uncompetitive ¢
all other than very coarse meshes. The piecewise linear collocation scheme does not
well for low n whenw is moderately large, taking a long time to start converging.

The tests were repeated at very low frequency to compare the two versions of the pi
wise trigonometric collocation scheme described in Section 2.3. The representation (
gives more reliable results for smadh than (2.5), which is corrupted by rounding er-
rors. As a rough guide, whem~ 0.01 the relative size of the rounding error using the
representation (2.5) is very close to the relative difference between the floating point e
uations of (comh — 1) and—2 sirf(wh/2) (see the end of Section 2.3). There are abol
16+ 2log,o wh significant digits of accuracy using (2.5) in standard 64-bit arithmetic ar
rounding errors o>1% whenwh <10~7. These rounding errors appear to be reduce
slightly whena is decreased.
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4.2. The p-, hp- and Adaptive h-Schemes

We now describe numerical results for the schemes of Sections 2.4-2.6 and com
them with those for the uniform mesh Galerkin approximation obtained in the previc
section. Again we také = 1 in the IDE (1.1). Starting from an initial uniform mesh with
h =1/4 (resph = 1/32 for thep- andhp-schemes whew = 100) we used Algorithm 2
to compute a unifornp-method solution, used Algorithm 3 for the adaptivenethod
solution, and calculated solutions for thp-scheme on a sequence of six meshes using tl
(end) element refinement parametes 0.17.

We use the approximate squtimﬁé”*)(z) obtained from the unifornin-scheme with
h = 2" (i.e., usingn* = 131072 elements) to calculate the relatlvé error for each
scheme; i.e., the error j&) N — UJ"” [ 200/ IUS" || L2(0.1)- Figures 4.6—4.8 show plots of
the computed error against both the flops used and nukhbédegrees of freedom foa(=
0.0, w=1),(a=0.01, » =100, and & = 1e — 6, w = 0.01). The numbers appearing
as a legend in each graph are again the slopes of the respective plots, calculated as &
squares fit to the four most accurate solutions.

The upper two graphs of each figure show that in common with the schemes descr
in the previous subsection, the and adaptivdr-schemes also converge algebraically fo
largen. The numerically obtained convergence rate for ph@method agrees with the the-
oretically expected rate of 2. The adaptive mesh-refining strategy of Algorithm 3 incree
the convergence rate for the piecewise linear Galerkin scheme from 1 (for the uniform
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FIG. 4.6. Results forh-uniform (- - ), p-uniform (—- —), h-adaptive (- -), andp-geometric (—) Galerkin
schemes whea = 0.01 andw = 1.
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FIG. 4.7. Results forh-uniform (- --), p-uniform (-- —), h-adaptive (- -), andp-geometric (—) Galerkin
schemes whea = 0.01 andw = 100.

approximation) to roughly 2, which is likely to be optimal for this finite element space. Tl
slope of the graph for tHep-scheme increases for increasigillustrating the exponential
convergence of this method.

It is interesting to note that if low accuracy (relative erret0~2) is required, then the
h-uniform scheme is more efficient than tiv@daptive scheme in the tests. This is partly du
to the overhead in computing the error estimate and the additional costs of matrix assel
and linear algebra on a nonuniform grid. Also th@daptive scheme seems to perform
badly at high frequency, perhaps because the grid adaptation strategy does not work
until the highly oscillatory solution is well-resolved everywhere. However, the plots clea
show that thdnp-scheme is far more efficient than the others at moderate to high accura
and is at least as efficient at lower accuracy.

The figures also show the dependence of the set-up and linear algebra flop colnts ¢
Note that the adaptive-scheme and unifornp-scheme are in general considerably more
expensive to set up than the other schemes. Foptbeheme this is presumably because
computing the matrix entries corresponding to high-degree polynomial basis functi
takes a long time. The reason for the adaptivecheme is slightly more subtle: because
the “current” mesh for this scheme depends on all the previous meshes and solution
take the set-up flop count to be the sum of all the flops used to set up the linear sy:s
and calculate the a posteriori error estimator on all previous meshes. Similarly, the lir
algebra flop count is defined to be the sum of all flops used in solving the linear systen
obtain the solution on all previous meshes.
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FIG. 4.8. Results forh-uniform (- --), p-uniform (—- -), h-adaptive (- -) anchp-geometric (—) Galerkin

schemes whea = 10°° andw = 0.01.
5. CONCLUSIONS

This paper provides a systematic study and comparison of numerical approxima
methods for the exact kernel form of Pocklingon’s thin wire equation. This is a diffict
computational problem, and we have described ways in which it can be tackled efficiel

Our numerical results show that the theoretically predicted first-order convergence
[18, 19] for the uniform piecewise linear Galerkin scheme is achieved in practice. The
collocation schemes described in Sections 2.2 and 2.3 also exhibit first-order converge
A second-order convergence rate can be obtained by using either an atlaoiive uni-
form p-refinement strategy. The geometric (nonadaptinejnethod whose predetermined
refinement strategy is designed to take known solution properties (the square root beh
at the ends of the wire [18, 19]) into account is by far the most efficient of the algorithms
have considered. As shown in Figs. 4.6—4.8 this scheme appears to converge exponer
its convergence rate increasing with the number of degrees of freedom. It has long |
known that grading the mesh appropriately to take account of singularities in the solu
can be used to obtain good convergence rates for numerical approximations of inte
equations (see for example [3] for a comprehensive survey).

One might be tempted to try an adaptig-algorithm to achieve even better results.
However, theh-adaptive algorithm of Section 2.6 requires repeated evaluation of the el
estimatom which, although this can be speeded up tremendously as described in Sectior
still imposes a considerable overhead on the calculationgiadaptive scheme would
suffer at least as badly, and so would probably be uncompetitive.
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Another way of tackling the end singularities is to augment the approximation space
adding the two new basis functiopg(x) = /X andg;(x) = /1 — X. Rynne proves in [18]
that the convergence rate for the uniform piecewise linear Galerkin approximation car
improved to second order if this is done correctly. Even though this type of approximat
may well be more efficient than either of the second-order schemes considered her
algebraic convergence means that it cannot compete withgseheme.

We conclude with a short list of recommendations for anyone who wants to compute
current induced on a perfectly conducting thin wire.

e Use the exact kernel form of Pocklington’s equation to model the problem (the Hal
form has some undesirable properties [11, 20], and the reduced kernel problem is ill-pc
[21]).

e Evaluate and integrate the kernel as efficiently as possible (Sections 3.1 and 3.2)

e Use the nonadaptive (end-refindtf)}-method of Section 2.5 to obtain high-accuracy
solutions efficiently.

e If low accuracy (relative error-1%) is sufficient, then the uniform grid piecewise
trigonometric collocation scheme of Section 2.3 is an efficient method.
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